AB/BC Calculus Exam – Review Sheet

A. Precalculus Type problems

	When you see the words	This is what you think of doing
A1	Find the zeros of $f(x)$.	
A2	Find the intersection of	
	f(x) and $g(x)$.	
A3	Show that $f(x)$ is even.	
A4	Show that $f(x)$ is odd.	
A5	Find domain of $f(x)$.	
A6	Find vertical asymptotes of $f(x)$.	
A7	If continuous function $f(x)$ has	
	f(a) < k and $f(b) > k$, explain why	
	there must be a value <i>c</i> such that	
	a < c < b and $f(c) = k$.	

B. Limit Problems

	When you see the words	This is what you think of doing
B1	Find $\lim_{x\to a} f(x)$.	
B2	Find $\lim_{x\to a} f(x)$ where $f(x)$ is a piecewise function.	
B3	Show that $f(x)$ is continuous.	
B4	Find $\lim_{x\to\infty} f(x)$ and $\lim_{x\to-\infty} f(x)$.	
B5	Find horizontal asymptotes of $f(x)$.	

	When you see the words	This is what you think of doing
B6	Find $\lim_{x \to 0} \frac{f(x)}{g(x)}$ if	
	$\lim_{x \to 0} f(x) = 0$ and $\lim_{x \to 0} g(x) = 0$	
B7	Find $\lim_{x\to 0} f(x) \cdot g(x) = 0(\pm\infty)$	
BC	$x \rightarrow 0$	
B8 BC	Find $\lim_{x \to 0} f(x) - g(x) = \infty - \infty$	
B9 BC	Find $\lim_{x\to 0} f(x)^{g(x)} = 1^{\infty}$ or 0^{0} or ∞^{0}	

C. Derivatives, differentiability, and tangent lines

	When you see the words	This is what you think of doing
C1	Find the derivative of a function using the derivative definition.	
C2	Find the average rate of change of f on $[a, b]$.	
C3	Find the instantaneous rate of change of f at $x = a$.	
C4	Given a chart of x and $f(x)$ and selected values of x between a and b, approximate $f'(c)$ where c is a value between a and b.	
C5	Find the equation of the tangent line to f at (x_1, y_1) .	
C6	Find the equation of the normal line to <i>f</i> at (x_1, y_1) .	
C7	Find <i>x</i> -values of horizontal tangents to <i>f</i> .	
C8	Find <i>x</i> -values of vertical tangents to <i>f</i> .	
C9	Approximate the value of $f(x_1 + a)$ if you know the function goes through point (x_1, y_1) .	

	When you see the words	This is what you think of doing
C10	Find the derivative of $f(g(x))$.	
C11	The line $y = mx + b$ is tangent to the graph of $f(x)$ at (x_1, y_1) .	
C12	Find the derivative of the inverse to $f(x)$ at $x = a$.	
C13	Given a piecewise function, show it is differentiable at $x = a$ where the function rule splits.	

D. Applications of Derivatives

	When you see the words	This is what you think of doing
D1	When you see the wordsFind critical values of $f(x)$.	
D2	Find the interval(s) where $f(x)$ is	
	increasing/decreasing.	
D3	Find points of relative extrema of	
	f(x).	
D4	Find inflection points of $f(x)$.	
D5	Find the absolute maximum or	
	minimum of $f(x)$ on $[a, b]$.	
D6	Find range of $f(x)$ on $(-\infty,\infty)$.	
D7	Find range of $f(x)$ on $[a, b]$	
D8	Show that Rolle's Theorem holds for	
20	f(x) on $[a, b]$.	
D9	Show that the Mean Value Theorem	
D3	holds for $f(x)$ on $[a, b]$.	
D10		
D10	Given a graph of $f'(x)$, determine	
	intervals where $f(x)$ is	
	increasing/decreasing.	

	When you see the words	This is what you think of doing
D11	Determine whether the linear	
	approximation for $f(x_1 + a)$ over-	
	estimates or under-estimates $f(x_1 + a)$.	
D12	Find intervals where the slope of $f(x)$	
	is increasing.	
D13	Find the minimum slope of $f(x)$ on	
	[<i>a</i> , <i>b</i>].	

E. Integral Calculus

	When you see the words	This is what you think of doing
E1	Approximate $\int_{a}^{b} f(x) dx$ using left	
	Riemann sums with <i>n</i> rectangles.	
E2	Approximate $\int_{a}^{b} f(x) dx$ using right	
	Riemann sums with <i>n</i> rectangles.	
E3	Approximate $\int_{a}^{b} f(x) dx$ using	
	midpoint Riemann sums.	
E4	Approximate $\int_{a}^{b} f(x) dx$ using	
	trapezoidal summation.	
E5	Find $\int_{b}^{a} f(x) dx$ where $a < b$.	
E6	Meaning of $\int_{a}^{x} f(t) dt$.	
E7	If $\int_{a}^{b} f(x) dx$, find $\int_{a}^{b} [f(x)+k] dx$.	
E8	Given the value of $F(a)$ where the	
	antiderivative of f is F , find $F(b)$.	
E9	Find $\frac{d}{dx}\int_{a}^{x}f(t) dt$.	
E10	Find $\frac{d}{dx} \int_{a}^{g(x)} f(t) dt$.	

E11 BC	Find $\int_{0}^{\infty} f(x) dx$.	
E12 BC	Find $\int f(x) \cdot g(x) dx$	

F. Applications of Integral Calculus

	When you see the words	This is what you think of doing
F1	Find the area under the curve $f(x)$ on	
	the interval [a, b].	
F2	Find the area between $f(x)$ and $g(x)$.	
F3	Find the line $x = c$ that divides the area under $f(x)$ on $[a, b]$ into two equal areas.	
F4	Find the volume when the area under $f(x)$ is rotated about the <i>x</i> -axis on the interval [<i>a</i> , <i>b</i>].	
F5	Find the volume when the area between $f(x)$ and $g(x)$ is rotated about the x-axis.	

F6	Given a base bounded by $f(x)$ and $g(x)$ on $[a, b]$ the cross	
	sections of the solid perpendicular to the <i>x</i> -axis are squares. Find the volume.	
F7	Solve the differential equation $\frac{dy}{dx} = f(x)g(y).$	
F8	Find the average value of $f(x)$ on $[a, b]$.	
F9	Find the average rate of change of $F'(x)$ on $[t_1,t_2]$.	
F10	<i>y</i> is increasing proportionally to <i>y</i> .	
F11	Given $\frac{dy}{dx}$, draw a slope field.	
F12 BC	Find $\int \frac{dx}{ax^2 + bx + c}$	
F13 BC	Use Euler's method to approximate $f(1.2)$ given a formula for	
	$\frac{dy}{dx}$, (x_0, y_0) and $\Delta x = 0.1$	
F14	Is the Euler's approximation an over-	
BC	or under-approximation?	

F15	A population <i>P</i> is increasing	
BC	logistically.	
F16	Find the carrying capacity of a	
BC	population growing logistically.	
F17	Find the value of <i>P</i> when a population	
BC	growing logistically is growing the	
	fastest.	
F18	Given continuous $f(x)$, find the arc	
BC	length on [a, b]	

G. Particle Motion and Rates of Change

	When you see the words	This is what you think of doing
G1	Given the position function $s(t)$ of	
	a particle moving along a straight	
	line, find the velocity and	
~ ~ ~	acceleration.	
G2	Given the velocity function	
~ ~ ~	v(t) and $s(0)$, find $s(t)$.	
G3	Given the acceleration function $a(t)$	
	of a particle at rest and $s(0)$, find	
	s(t).	
G4	Given the velocity function $v(t)$,	
	determine if a particle is speeding	
	up or slowing down at	
	t = k.	
G5	Given the position function $s(t)$,	
	find the average velocity on $[t_1, t_2]$.	
G6	Given the position function $s(t)$,	
	find the instantaneous velocity at	
	t = k.	
G7	Given the velocity function $v(t)$ on	
	$[t_1, t_2]$, find the minimum	
	acceleration of a particle.	
G8	Given the velocity function $v(t)$,	
	find the average velocity on $[t_1, t_2]$.	
G9	Given the velocity function $v(t)$,	
	determine the difference of position	
	of a particle on $[t_1, t_2]$.	
G10	Given the velocity function $v(t)$,	
	determine the distance a particle	
	travels on $[t_1, t_2]$.	
G11	t ₂	
	Calculate $\int v(t) dt$ without a	
	t_1	
	calculator.	

	When you see the words	This is what you think of doing
G12	Given the velocity function $v(t)$ and	
	s(0), find the greatest distance of	
	the particle from the starting position on $[0,t_1]$.	
G13	The volume of a solid is changing at the rate of	
G14	The meaning of $\int_{a}^{b} R'(t) dt$.	
G15	Given a water tank with g gallons initially, filled at the rate of $F(t)$	
	gallons/min and emptied at the rate of $E(t)$ gallons/min on $[t_1, t_2]$ a)	
	The amount of water in the tank at <i>t</i>	
	= m minutes. b) the rate the water	
	amount is changing at $t = m$ minutes	
	and c) the time <i>t</i> when the water in	
	the tank is at a minimum or	
	maximum.	

H. Parametric and Polar Equations - BC

	When you see the words	This is what you think of doing
H1	Given $x = f(t), y = g(t)$, find $\frac{dy}{dx}$	
H2	Given $x = f(t), y = g(t)$, find $\frac{d^2y}{dx^2}$	
Н3	Given $x = f(t), y = g(t)$, find arc length on $[t_1, t_2]$	
H4	Express a polar equation in the form of $r = f(\theta)$ in parametric form.	
Н5	Find the slope of the tangent line to $r = f(\theta)$	
Н5	Find horizontal tangents to a polar curve $r = f(\theta)$	
H6	Find vertical tangents to a polar curve $r = f(\theta)$	
H7	Find the area bounded by the polar curve $r = f(\theta)$ on $[\theta_1, \theta_2]$	
H8	Find the arc length of the polar curve $r = f(\theta)$ on $[\theta_1, \theta_2]$	

I. Vectors and Vector-valued functions - BC

	When you see the words	This is what you think of doing
I1	Find the magnitude of vector	
	$ v\langle v_1, v_2\rangle$	
I2	Find the dot product: $\langle u_1, u_2 \rangle \cdot \langle v_1, v_2 \rangle$	
I3	The position vector of a particle	
	moving in the plane is	
	$r(t) = \langle x(t), y(t) \rangle$. Find a) the	
	velocity vector and b) the	
	acceleration vector.	
I4	The position vector of a particle	
	moving in the plane is	
	$r(t) = \langle x(t), y(t) \rangle$. Find the speed of	
	the particle at time <i>t</i> .	
I5	Given the velocity vector	
	$v(t) = \langle x(t), y(t) \rangle$ and position at	
	time $t = 0$, find the position vector.	
I6	Given the velocity vector	
	$v(t) = \langle x(t), y(t) \rangle$, when does the	
	particle stop?	
I7	The position vector of a particle	
	moving in the plane is	
	$r(t) = \langle x(t), y(t) \rangle$. Find the distance	
	the particle travels from t_1 to t_2 .	

J. Taylor Polynomial Approximations - BC

	When you see the words	This is what you think of doing
J1	Find the <i>n</i> th degree Maclaurin	
	polynomial to $f(x)$	
J2	Find the <i>n</i> th degree Taylor	
	polynomial to $f(x)$ centered at	
	x = c	
J3	Use the first-degree Taylor	
	polynomial to $f(x)$ centered at	
	x = c to approximate $f(k)$ and	
	determine whether the	
	approximation is greater than or less	
	than $f(k)$	
J4	Given an <i>n</i> th degree Taylor	
	polynomial for f about $x = c$, find	
	$f(c), f'(c), f''(c),, f^{(n)}(c)$	

	When you see the words	This is what you think of doing
J5	Given a Taylor polynomial centered	
	at <i>c</i> , determine if there is enough	
	information to determine if there is	
	a relative max or min at $x = c$.	
J6	Given an <i>n</i> th degree Taylor	
	polynomial for f about $x = c$, find	
	the Lagrange error bound	
	(remainder).	
J7	Given an <i>n</i> th degree Maclaurin	
	polynomial P for f, find the	
	$\left f(k) - P(k) \right $	

K. Infinite Series - BC

	When you see the words	This is what you think of doing
K1	Given a_n , determine whether the	
	sequence a_n converges.	
K2	Given a_n , determine whether the	
	series a_n could converge.	
K3	Determine whether a series	
	converges.	
K4	Determine if a series converges	
	absolutely or conditionally.	
K5	Find the sum of a geometric series.	
K6	Find the interval of convergence of a	
	series.	

	$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots$	
K8	$f(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots$	
K9	$f(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$	
K10	$f(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$	
	$f(x) = 1 + x + x^{2} + x^{3} + \dots + x^{n} + \dots$	

K12	Given a formula for the <i>n</i> th derivative of $f(x)$. Write the first four terms and the general term for the power series for $f(x)$ centered at $x = c$.	
K13	Let S_4 be the sum of the first 4 terms of an alternating series for $f(x)$. Approximate $ f(x) - S_4 $.	
K14	Write a series for expressions like e^{x^2} .	

AB/BC Calculus Exam – Review Sheet – Solutions

A. Precalculus Type problems

	When you see the words	This is what you think of doing
A1	Find the zeros of $f(x)$.	Set function equal to 0. Factor or use quadratic equation if quadratic. Graph to find zeros on calculator.
A2	Find the intersection of $f(x)$ and $g(x)$.	Set the two functions equal to each other. Find intersection on calculator.
A3	Show that $f(x)$ is even.	Show that $f(-x) = f(x)$. This shows that the graph of f is symmetric to the <i>y</i> -axis.
A4	Show that $f(x)$ is odd.	Show that $f(-x) = -f(x)$. This shows that the graph of f is symmetric to the origin.
A5	Find domain of $f(x)$.	Assume domain is $(-\infty,\infty)$. Restrict domains: denominators \neq 0, square roots of only non-negative numbers, logarithm or natural log of only positive numbers.
A6	Find vertical asymptotes of $f(x)$.	Express $f(x)$ as a fraction, express numerator and denominator in factored form, and do any cancellations. Set denominator equal to 0.
A7	If continuous function $f(x)$ has f(a) < k and $f(b) > k$, explain why there must be a value <i>c</i> such that a < c < b and $f(c) = k$.	This is the Intermediate Value Theorem.

B. Limit Problems

	When you see the words	This is what you think of doing
B1	Find $\lim_{x\to a} f(x)$.	Step 1: Find $f(a)$. If you get a zero in the denominator,
	$x \rightarrow a$	Step 2: Factor numerator and denominator of $f(x)$. Do any
		cancellations and go back to Step 1. If you still get a
		zero in the denominator, the answer is either ∞ , $-\infty$,
		or does not exist. Check the signs of
		$\lim_{x\to a^-} f(x)$ and $\lim_{x\to a^+} f(x)$ for equality.
B2	Find $\lim_{x \to a} f(x)$ where $f(x)$ is a	Determine if $\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x)$ by plugging in <i>a</i> to
	piecewise function.	f(x), x < a and $f(x), x > a$ for equality. If they are not equal, the
		limit doesn't exist.
B3	Show that $f(x)$ is continuous.	Show that 1) $\lim_{x \to a} f(x)$ exists
		2) $f(a)$ exists
		3) $\lim_{x \to a} f(x) = f(a)$
B4	Find $\lim_{x\to\infty} f(x)$ and $\lim_{x\to-\infty} f(x)$.	Express $f(x)$ as a fraction. Determine location of the highest
	$x \rightarrow \infty$ $x \rightarrow -\infty$	power:
		Denominator: $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} f(x) = 0$
		Both Num and Denom: ratio of the highest power coefficients
		Numerator: $\lim_{x \to \infty} f(x) = \pm \infty$ (plug in large number)
B5	Find horizontal asymptotes of $f(x)$.	$\lim_{x \to \infty} f(x) \text{ and } \lim_{x \to \infty} f(x)$

	When you see the words	This is what you think of doing
B6	Find $\lim_{x\to 0} \frac{f(x)}{g(x)}$ if	Use L'Hospital's Rule:
	Find $x \to 0$ $g(x)$ $\lim_{x \to 0} f(x) = 0$ and $\lim_{x \to 0} g(x) = 0$	$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{f'(x)}{g'(x)}$
B7 BC	Find $\lim_{x\to 0} f(x) \cdot g(x) = 0(\pm\infty)$	Express $g(x) = \frac{1}{\frac{1}{g(x)}}$ and apply L'Hospital's rule.
B8	Find $\lim_{x \to 0} f(x) - g(x) = \infty - \infty$	Express $f(x) - g(x)$ with a common denominator and use
BC	$\lambda \rightarrow 0$	L'Hospital's rule.
B9 BC	Find $\lim_{x \to 0} f(x)^{g(x)} = 1^{\infty}$ or 0^{0} or ∞^{0}	Take the natural log of the expression and apply L'Hospital's rule, remembering to take the resulting answer and raise <i>e</i> to that natural
		that power.

C. Derivatives, differentiability, and tangent lines

	When you see the words	This is what you think of doing
C1	Find the derivative of a function using the derivative definition.	Find $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ or $\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$
C2	Find the average rate of change of f on $[a, b]$.	Find $\frac{f(b)-f(a)}{b-a}$ Find $f'(a)$
C3	Find the instantaneous rate of change of f at $x = a$.	
C4	Given a chart of x and $f(x)$ and selected values of x between a and b, approximate $f'(c)$ where c is a value between a and b.	Straddle <i>c</i> , using a value of $k \ge c$ and a value of $h \le c$. $f'(c) \approx \frac{f(k) - f(h)}{k - h}$
C5	Find the equation of the tangent line to f at (x_1, y_1) .	Find slope $m = f'(x_i)$. Then use point slope equation: $y - y_1 = m(x - x_1)$
C6	Find the equation of the normal line to f at (x_1, y_1) .	Find slope $m \perp = -1/f'(x_i)$. Then use point slope equation: $y - y_1 = m(x - x_1)$
C7	Find <i>x</i> -values of horizontal tangents to <i>f</i> .	Write $f'(x)$ as a fraction. Set numerator of $f'(x) = 0$.
C8	Find <i>x</i> -values of vertical tangents to <i>f</i> .	Write $f'(x)$ as a fraction. Set denominator of $f'(x) = 0$.
C9	Approximate the value of $f(x_1 + a)$ if you know the function goes through point (x_1, y_1) .	Find slope $m = f'(x_i)$. Then use point slope equation: $y - y_1 = m(x - x_1)$. Evaluate this line for y at $x = x_1 + a$. Note: The closer a is to 0, the better the approximation will be. Also note that using concavity, it can be determine if this value is an over or under-approximation for $f(x_1 + a)$.
C10	Find the derivative of $f(g(x))$.	This is the chain rule. You are finding $f'(g(x)) \cdot g'(x)$.
C11	The line $y = mx + b$ is tangent to the graph of $f(x)$ at (x_1, y_1) .	 Two relationships are true: 1) The function <i>f</i> and the line share the same slope at x₁: m = f'(x₁) 2) The function <i>f</i> and the line share the same <i>y</i>-value at x₁.

_	When you see the words	This is what you think of doing
C12	Find the derivative of the inverse to	Follow this procedure:
	f(x) at $x = a$.	1) Interchange x and y in $f(x)$.
		2) Plug the <i>x</i> -value into this equation and solve for <i>y</i> (you may need a calculator to solve graphically)
		3) Using the equation in 1) find $\frac{dy}{dx}$ implicitly.
		4) Plug the <i>y</i> -value you found in 2) to $\frac{dy}{dx}$
C13	Given a piecewise function, show it	First, be sure that $f(x)$ is continuous at $x = a$. Then take the
	is differentiable at $x = a$ where the function rule splits.	derivative of each piece and show that $\lim_{x\to a^-} f'(x) = \lim_{x\to a^+} f'(x)$.

D. Applications of Derivatives

	When you see the words	This is what you think of doing
D1	Find critical values of $f(x)$.	Find and express $f'(x)$ as a fraction. Set both numerator
		and denominator equal to zero and solve.
D2	Find the interval(s) where $f(x)$ is	Find critical values of $f'(x)$. Make a sign chart to find sign
	increasing/decreasing.	of $f'(x)$ in the intervals bounded by critical values.
		Positive means increasing, negative means decreasing.
D3	Find points of relative extrema of	Make a sign chart of $f'(x)$. At $x = c$ where the derivative
	f(x).	switches from negative to positive, there is a relative minimum. When the derivative switches from positive to negative, there is a relative maximum. To actually find the point, evaluate $f(c)$. OR if $f'(c)=0$, then if $f''(c)>0$,
		there is a relative minimum at $x = c$. If $f''(c) < 0$, there is a
		relative maximum at $x = c$. (2 nd Derivative test).
D4	Find inflection points of $f(x)$.	Find and express $f''(x)$ as a fraction. Set both numerator
		and denominator equal to zero and solve. Make a sign chart of $f''(x)$. Inflection points occur when $f''(x)$ switches
		from positive to negative or negative to positive.
D5	Find the absolute maximum or minimum of $f(x)$ on $[a, b]$.	Use relative extrema techniques to find relative max/mins. Evaluate f at these values. Then examine $f(a)$ and $f(b)$.
		The largest of these is the absolute maximum and the smallest of these is the absolute minimum
D6	Find range of $f(x)$ on $(-\infty,\infty)$.	Use relative extrema techniques to find relative max/mins. Evaluate f at these values. Then examine $f(a)$ and $f(b)$.
		Then examine $\lim_{x\to\infty} f(x)$ and $\lim_{x\to\infty} f(x)$.
D7	Find range of $f(x)$ on $[a, b]$	Use relative extrema techniques to find relative max/mins. Evaluate f at these values. Then examine $f(a)$ and $f(b)$.
		Then examine $f(a)$ and $f(b)$.
D8	Show that Rolle's Theorem holds for $f(x)$ on $[a, b]$.	Show that <i>f</i> is continuous and differentiable on $[a, b]$. If $f(a) = f(b)$, then find some <i>c</i> on $[a, b]$ such that $f'(c) = 0$.

D9	Show that the Mean Value Theorem holds for $f(x)$ on $[a, b]$.	Show that <i>f</i> is continuous and differentiable on [<i>a</i> , <i>b</i>]. If $f(a) = f(b)$, then find some <i>c</i> on [<i>a</i> , <i>b</i>] such that $f'(c) = \frac{f(b) - f(a)}{b - a}$
D10	Given a graph of $f'(x)$, determine	Make a sign chart of $f'(x)$ and determine the intervals
	intervals where $f(x)$ is increasing/decreasing.	where $f'(x)$ is positive and negative.
D11	Determine whether the linear	Find slope $m = f'(x_i)$. Then use point slope equation:
	approximation for $f(x_1 + a)$ over-	$y - y_1 = m(x - x_1)$. Evaluate this line for y at $x = x_1 + a$.
	estimates or under-estimates $f(x_1 + a)$.	If $f''(x_1) > 0$, f is concave up at x_1 and the linear
		approximation is an underestimation for $f(x_1 + a)$.
		$f''(x_1) < 0$, f is concave down at x_1 and the linear
		approximation is an overestimation for $f(x_1 + a)$.
D12	Find intervals where the slope of $f(x)$	Find the derivative of $f'(x)$ which is $f''(x)$. Find critical
	is increasing.	values of $f''(x)$ and make a sign chart of $f''(x)$ looking
		for positive intervals.
D13	Find the minimum slope of $f(x)$ on	Find the derivative of $f'(x)$ which is $f''(x)$. Find critical
	[<i>a</i> , <i>b</i>].	values of $f''(x)$ and make a sign chart of $f''(x)$. Values of
		x where $f''(x)$ switches from negative to positive are
		potential locations for the minimum slope. Evaluate $f'(x)$
		at those values and also $f'(a)$ and $f'(b)$ and choose the
		least of these values.

E. Integral Calculus

	When you see the words	This is what you think of doing
E1	Approximate $\int_{a}^{b} f(x) dx$ using left	$A = \left(\frac{b-a}{n}\right) \left[f(x_0) + f(x_1) + f(x_2) + \dots + f(x_{n-1})\right]$
	Riemann sums with n rectangles.	
E2	Approximate $\int_{a}^{b} f(x) dx$ using right	$A = \left(\frac{b-a}{n}\right) \left[f(x_1) + f(x_2) + f(x_3) + \dots + f(x_n)\right]$
	Riemann sums with <i>n</i> rectangles.	
E3	Approximate $\int_{a}^{b} f(x) dx$ using	Typically done with a table of points. Be sure to use only values that are given. If you are given 7 points, you can only calculate 3 midpoint rectangles.
	midpoint Riemann sums.	
E4	Approximate $\int_{a}^{b} f(x) dx$ using	$A = \left(\frac{b-a}{2n}\right) \left[f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-1}) + f(x_n)\right]$
	trapezoidal summation.	This formula only works when the base of each trapezoid is the same. If not, calculate the areas of individual trapezoids.

E5	Find $\int_{b}^{a} f(x) dx$ where $a < b$.	$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$
E6	Meaning of $\int_{a}^{x} f(t) dt$.	The accumulation function – accumulated area under function f starting at some constant a and ending at some variable x .
E7	Given $\int_{a}^{b} f(x) dx$, find $\int_{a}^{b} [f(x)+k] dx$.	$\int_{a}^{b} \left[f(x) + k \right] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} k dx$
E8	Given the value of $F(a)$ where the antiderivative of f is F , find $F(b)$.	Use the fact that $\int_{a}^{b} f(x) dx = F(b) - F(a)$ so $F(b) = F(a) + \int_{a}^{b} f(x) dx$. Use the calculator to find the definite integral.
E9	Find $\frac{d}{dx}\int_{a}^{x}f(t) dt$.	$\frac{d}{dx}\int_{a}^{x} f(t) dt = f(x)$. The 2nd Fundamental Theorem.
E10	Find $\frac{d}{dx} \int_{a}^{g(x)} f(t) dt$.	$\frac{d}{dx}\int_{a}^{g(x)} f(t) dt = f(g(x)) \cdot g'(x).$ The 2nd Fundamental Theorem .
E11 BC	Find $\int_{0}^{\infty} f(x) dx$.	$\int_{0}^{\infty} f(x) dx = \lim_{h \to \infty} \int_{0}^{h} f(x) dx = \lim_{h \to \infty} F(h) - F(0).$
E12 BC	Find $\int f(x) \cdot g(x) dx$	If <i>u</i> -substitution doesn't work, try integration by parts: $\int u \cdot dv = uv - \int v \cdot du$

F. Applications of Integral Calculus

	When you see the words	This is what you think of doing
F1	Find the area under the curve $f(x)$ on the interval $[a, b]$.	$\int_{a}^{b} f(x) dx$
F2	Find the area between $f(x)$ and $g(x)$.	Find the intersections, <i>a</i> and <i>b</i> of $f(x)$ and $g(x)$. If $f(x) \ge g(x)$ on [a,b], then area $A = \int_{a}^{b} [f(x) - g(x)] dx$.
F3	Find the line $x = c$ that divides the area under $f(x)$ on $[a, b]$ into two equal areas.	$\int_{a}^{c} f(x) dx = \int_{c}^{b} f(x) dx \text{ or } \int_{a}^{b} f(x) dx = 2 \int_{a}^{c} f(x) dx$

F4	Find the volume when the area under $f(x)$ is rotated about the <i>x</i> -axis on the interval [<i>a</i> , <i>b</i>].	Disks: Radius = $f(x)$: $V = \pi \int_{a}^{b} [f(x)]^{2} dx$
F5	Find the volume when the area between $f(x)$ and $g(x)$ is rotated about the x-axis.	Washers: Outside radius = $f(x)$. Inside radius = $g(x)$. Establish the interval where $f(x) \ge g(x)$ and the values of a and b where $f(x) = g(x)$. $V = \pi \int_{a}^{b} \left(\left[f(x) \right]^{2} - \left[g(x) \right]^{2} \right) dx$

F6	Given a base bounded by $f(x)$ and $g(x)$ on $[a, b]$ the cross	Base = $f(x) - g(x)$. Area = base ² = $[f(x) - g(x)]^2$.
	sections of the solid perpendicular to the <i>x</i> -axis are squares. Find the volume.	Volume = $\int_{a}^{b} \left[f(x) - g(x) \right]^{2} dx$
F7	Solve the differential equation	Separate the variables: x on one side, y on the other with the
	$\frac{dy}{dx} = f(x)g(y).$	dx and dy in the numerators. Then integrate both sides, remembering the + <i>C</i> , usually on the <i>x</i> -side.
F8	Find the average value of $f(x)$ on	
	[<i>a</i> , <i>b</i>].	f(x) dx
		$F_{aug} = \frac{a}{a}$
		b-a
F9	Find the average rate of change of $E'(x) = [4, 4]$	$d \int \mathbf{r}'(x) dx$
	$F'(x)$ on $[t_1, t_2]$.	$F_{avg} = \frac{\int_{avg}^{b} f(x) dx}{b-a}$ $\frac{\frac{d}{dt} \int_{t_{1}}^{t_{2}} F'(x) dx}{t_{2}-t_{1}} = \frac{F'(t_{2}) - F'(t_{1})}{t_{2}-t_{1}}$
		$\frac{t_1}{1} = \frac{T(t_2) - T(t_1)}{1}$
710		$I_2 - I_1$ $I_2 - I_1$
F10	<i>y</i> is increasing proportionally to <i>y</i> .	$\frac{dy}{dt} = ky$ which translates to $y = Ce^{kt}$
F11	Given $\frac{dy}{dx}$, draw a slope field.	Use the given points and plug them into $\frac{dy}{dx}$, drawing little
	$\frac{d}{dx}$, that a slope field.	
		lines with the calculated slopes at the point.
F12	Find $\int \frac{dx}{ax^2 + bx + c}$	Factor $ax^2 + bx + c$ into non-repeating factors to get
BC	$\int ax^2 + bx + c$	$\int \frac{dx}{(mx+n)(px+q)}$ and use Heaviside method to create
		J(mx+n)(px+q)
		partial fractions and integrate each fraction.
F13	Use Euler's method to approximate	$dy = \frac{dy}{dx}(\Delta x), y_{\text{new}} = y_{\text{old}} + dy$
BC	f(1.2) given a formula for	dx dx dx
	$\frac{dy}{dx}$, (x_0, y_0) and $\Delta x = 0.1$	
E14	dx (0.00) Is the Euler's approximation an over-	1 12
F14 BC	or under-approximation?	Look at sign of $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ in the interval. This gives
		increasing/decreasing and concavity information. Draw a picture to ascertain the answer.
F15	A population <i>P</i> is increasing	
BC	logistically.	$\frac{dt}{dt} = kP(C - P).$
F16	Find the carrying capacity of a	$\frac{dP}{dP} = P(C - P) = 0 \rightarrow C - P$
BC	population growing logistically.	$\frac{dP}{dt} = kP(C-P) = 0 \Longrightarrow C = P.$
-	-	

F17 BC	Find the value of <i>P</i> when a population growing logistically is growing the fastest.	$\frac{dP}{dt} = kP(C-P) \Longrightarrow \text{Set } \frac{d^2P}{dt^2} = 0$
F18 BC	Given continuous $f(x)$, find the arc length on $[a, b]$	$L = \int_{a}^{b} \sqrt{1 + \left[f'(x)\right]^2} dx$

G. Particle Motion and Rates of Change

	When you see the words	This is what you think of doing
G1	Given the position function $s(t)$ of a particle moving along a straight line, find the velocity and acceleration.	v(t) = s'(t) $a(t) = v'(t) = s''(t)$
G2	Given the velocity function $v(t)$ and $s(0)$, find $s(t)$.	$s(t) = \int v(t) dt + C$. Plug in $s(0)$ to find C.
G3	Given the acceleration function $a(t)$ of a particle at rest and $s(0)$, find s(t).	$v(t) = \int a(t) dt + C_1. \text{ Plug in } v(0) = 0 \text{ to find } C_1.$ $s(t) = \int v(t) dt + C_2. \text{ Plug in } s(0) \text{ to find } C_2.$
G4	Given the velocity function $v(t)$, determine if a particle is speeding up or slowing down at t = k.	Find $v(k)$ and $a(k)$. If both have the same sign, the particle is speeding up. If they have different signs, the particle is slowing down.
G5	Given the position function $s(t)$, find the average velocity on $[t_1, t_2]$.	Avg. vel. $=\frac{s(t_2) - s(t_1)}{t_2 - t_1}$ Inst. vel. $= s'(k)$.
G6	Given the position function $s(t)$, find the instantaneous velocity at $t = k$.	Inst. vel. = $s'(k)$.
G7	Given the velocity function $v(t)$ on $[t_1,t_2]$, find the minimum acceleration of a particle.	Find $a(t)$ and set $a'(t) = 0$. Set up a sign chart and find critical values. Evaluate the acceleration at critical values and also t_1 and t_2 to find the minimum.
G8	Given the velocity function $v(t)$, find the average velocity on $[t_1, t_2]$.	Avg. vel. = $\frac{\int_{t_1}^{t_2} v(t) dt}{t_2 - t_1}$ Displacement = $\int_{t_1}^{t_2} v(t) dt$ Distance = $\int_{t_1}^{t_2} v(t) dt$
G9	Given the velocity function $v(t)$, determine the difference of position of a particle on $[t_1, t_2]$.	Displacement = $\int_{t_1}^{t_2} v(t) dt$
G10	Given the velocity function $v(t)$, determine the distance a particle travels on $[t_1, t_2]$.	Distance = $\int_{t_1}^{t_2} v(t) dt$

G11	Calculate $\int_{t_1}^{t_1} v(t) dt$ without a calculator.	Set $v(t) = 0$ and make a sign charge of $v(t) = 0$ on $[t_1, t_2]$. On intervals $[a, b]$ where $v(t) > 0$, $\int_{a}^{b} v(t) dt = \int_{a}^{b} v(t) dt$ On intervals $[a, b]$ where $v(t) < 0$, $\int_{a}^{b} v(t) dt = \int_{b}^{a} v(t) dt$
G12	Given the velocity function $v(t)$ and $s(0)$, find the greatest distance of the particle from the starting position on $[0,t_1]$.	Generate a sign chart of $v(t)$ to find turning points. $s(t) = \int v(t) dt + C$. Plug in $s(0)$ to find C. Evaluate $s(t)$ at all turning points and find which one gives the maximum distance from $s(0)$.

G13	The volume of a solid is changing at the rate of	$\frac{dV}{dt} = \dots$
G14	The meaning of $\int_{a}^{b} R'(t) dt$.	This gives the accumulated change of $R(t)$ on $[a, b]$. $\int_{a}^{b} R'(t) dt = R(b) - R(a) \text{ or } R(b) = R(a) + \int_{a}^{b} R'(t) dt$
G15	Given a water tank with g gallons initially, filled at the rate of $F(t)$ gallons/min and emptied at the rate of $E(t)$ gallons/min on $[t_1,t_2]$ a) The amount of water in the tank at t = m minutes. b) the rate the water amount is changing at $t = m$ minutes and c) the time t when the water in the tank is at a minimum or maximum.	a) $g + \int_{0}^{m} [F(t) - E(t)] dt$ b) $\frac{d}{dt} \int_{0}^{m} [F(t) - E(t)] dt = F(m) - E(m)$ c) set $F(m) - E(m) = 0$, solve for <i>m</i> , and evaluate $g + \int_{0}^{m} [F(t) - E(t)] dt$ at values of <i>m</i> and also the endpoints.

H. Parametric and Polar Equations - BC

	When you see the words	This is what you think of doing
H1	Given $x = f(t), y = g(t)$, find $\frac{dy}{dx}$	$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$
H2	Given $x = f(t), y = g(t)$, find $\frac{d^2y}{dx^2}$	$x = f(t), y = g(t), \text{ find } \frac{d^2 y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{\frac{d}{dt} \left(\frac{dy}{dx}\right)}{\frac{dx}{dt}}$
Н3	Given $x = f(t), y = g(t)$, find arc length on $[t_1, t_2]$	$L = \int_{t_1}^{t_2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$
H4	Express a polar equation in the form of $r = f(\theta)$ in parametric form.	$x = r\cos\theta = f(\theta)\cos\theta$ $y = r\sin\theta = f(\theta)\sin\theta$

Н5	Find the slope of the tangent line to $r = f(\theta)$	$x = r\cos\theta y = r\sin\theta \Rightarrow \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dy}{d\theta}}$
H5	Find horizontal tangents to a polar curve $r = f(\theta)$	$x = r\cos\theta y = r\sin\theta$ Find where $r\sin\theta = 0$ when $r\cos\theta \neq 0$
H6	Find vertical tangents to a polar curve $r = f(\theta)$	$x = r\cos\theta y = r\sin\theta$ Find where $r\cos\theta = 0$ when $r\sin\theta \neq 0$
H7	Find the area bounded by the polar curve $r = f(\theta)$ on $[\theta_1, \theta_2]$	$A = \frac{1}{2} \int_{\theta_1}^{\theta_2} r^2 d\theta = \frac{1}{2} \int_{\theta_1}^{\theta_2} \left[f(\theta) \right]^2 d\theta$
H8	Find the arc length of the polar curve $r = f(\theta)$ on $[\theta_1, \theta_2]$	$s = \int_{\theta_1}^{\theta_2} \sqrt{\left[f(\theta)\right]^2 + \left[f'(\theta)\right]^2} d\theta = \int_{\theta_1}^{\theta_2} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta$

I. Vectors and Vector-valued functions - BC

	When you see the words	This is what you think of doing
I1	Find the magnitude of vector $v\langle v_1, v_2 \rangle$	$\ v\ = \sqrt{v_1^2 + v_2^2}$
I2	Find the dot product: $\langle u_1, u_2 \rangle \cdot \langle v_1, v_2 \rangle$	$\langle u_1, u_2 \rangle \cdot \langle v_1, v_2 \rangle = u_1 v_1 + u_2 v_2$
13	The position vector of a particle moving in the plane is $r(t) = \langle x(t), y(t) \rangle$. Find a) the velocity vector and b) the acceleration vector.	a) $v(t) = \langle x'(t), y'(t) \rangle$ b) $a(t) = \langle x''(t), y''(t) \rangle$
I4	The position vector of a particle moving in the plane is $r(t) = \langle x(t), y(t) \rangle$. Find the speed of the particle at time <i>t</i> .	Speed = $ v(t) = \sqrt{[x'(t)]^2 + [y'(t)]^2}$ - a scalar
15	Given the velocity vector $v(t) = \langle x(t), y(t) \rangle$ and position at	$s(t) = \int x(t) dt + \int y(t) dt + C$ Use $s(0)$ to find C remembering that it is a vector
I6	time $t = 0$, find the position vector. Given the velocity vector $v(t) = \langle x(t), y(t) \rangle$, when does the particle stop?	Use $s(0)$ to find C, remembering that it is a vector. $v(t) = 0 \Rightarrow x(t) = 0$ AND $y(t) = 0$
I7	The position vector of a particle moving in the plane is $r(t) = \langle x(t), y(t) \rangle$. Find the distance the particle travels from t_1 to t_2 .	Distance = $\int_{t_1}^{t_2} \sqrt{[x'(t)]^2 + [y'(t)]^2} dt$

J. Taylor Polynomial Approximations - BC

_	When you see the words	This is what you think of doing
J1	Find the <i>n</i> th degree Maclaurin polynomial to $f(x)$	$P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + $
		$\frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n$ $P_n(x) = f(c) + f'(c)(x-c) + \frac{f''(c)(x-c)^2}{2!} + \dots$
J2	Find the <i>n</i> th degree Taylor polynomial to $f(x)$ centered at	$P_n(x) = f(c) + f'(c)(x-c) + \frac{f''(c)(x-c)^2}{2!} + $
	x = c	$\frac{f'''(c)(x-c)^3}{3!} + \dots + \frac{f^{(n)}(c)(x-c)^n}{n!}$ Write the first-degree TP and find $f(k)$. Use the signs of
J3	Use the first-degree Taylor polynomial to $f(x)$ centered at x = c to approximate $f(k)$ and determine whether the approximation is greater than or less	Write the first-degree TP and find $f(k)$. Use the signs of $f'(c)$ and $f''(c)$ to determine increasing/decreasing and concavity and draw your line (1 st degree TP) to determine whether the line is under the curve (under-approximation) or over the curve (over-approximation).
	than $f(k)$	over the curve (over-approximation).
J4	Given an <i>n</i> th degree Taylor polynomial for <i>f</i> about $x = c$, find $f(c), f'(c), f''(c), \dots, f^{(n)}(c)$	$\frac{f(c) \text{ will be the constant term in your Taylor polynomial (TP)}}{f'(c) \text{ will be the coefficient of the } x \text{ term in the TP.}}$ $\frac{f''(c)}{2!} \text{ will be the coefficient of the } x^2 \text{ term in the TP.}$ $\frac{f^{(n)}(c)}{n!} \text{ will be the coefficient of the } x^n \text{ term in the TP.}$
J5	Given a Taylor polynomial centered at <i>c</i> , determine if there is enough information to determine if there is a relative maximum or minimum at x = c.	If there is no first-degree <i>x</i> -term in the TP, then the value of <i>c</i> about which the function is centered is a critical value. Thus the coefficient of the x^2 term is the second derivative divided by 2! Using the second derivative test, we can tell whether there is a relative maximum, minimum, or neither at $x = c$.
J6	Given an <i>n</i> th degree Taylor polynomial for f about $x = c$, find the Lagrange error bound (remainder).	$R_n(x) = \left \frac{f^{(n+1)}(z)}{(n+1)!} (x-c)^{n+1} \right .$ The value of z is some number between x and c. $f^{(n+1)}(z)$ represents the $(n+1)^{\text{st}}$ derivative of z. This usually is given to you.
J7	Given an <i>n</i> th degree Maclaurin polynomial <i>P</i> for <i>f</i> , find the f(k) - P(k)	This is looking for the Lagrange error – the difference between the value of the function at $x = k$ and the value of the TP at x = k.

K. Infinite Series - BC

	When you see the words	This is what you think of doing
K1	Given a_n , determine whether the	a_n converges if $\lim_{n \to \infty} a_n$ exists.
	sequence a_n converges.	n /
K2	Given a_n , determine whether the	If $\lim_{n \to \infty} a_n = 0$, the series could converge. If $\lim_{n \to \infty} a_n \neq 0$, the
	series a_n could converge.	series cannot converge. (<i>n</i> th term test).
K3	Tests to determine where a series converges.	Examine the <i>n</i> th term of the series. Assuming it passes the <i>n</i> th term test, the most widely used series forms and their rule of convergence are:
		Geometric: $\sum_{n=0}^{\infty} ar^n$ - converges if $ r < 1$
		<i>p</i> -series: $\sum_{n=1}^{\infty} \frac{1}{n^p}$ - converges if $p > 1$
		Alternating: $\sum_{n=1}^{\infty} (-1)^n a_n$ - converges if $0 < a_{n+1} < a_n$
		Limit Comparison: If $\lim_{n\to\infty} \frac{a_n}{b_n} = L$ where <i>L</i> is finite and
		positive, a_n and b_n either both converge or both diverge.
		Ratio: $\sum_{n=0}^{\infty} a_n$ - converges if $\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right < 1$
K4	Determine whether a series converges absolutely or	Absolute: If $\sum a_n$ converges and $\sum a_n $ converges
	conditionally.	Conditional: If $\sum a_n$ converges and $\sum a_n $ diverges
K5	Find the sum of a geometric series.	$\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}$
K6	Find the interval of convergence of a	If not given, you will have to generate the <i>n</i> th term formula.
	series.	Use a test (usually the ratio test) to find the interval of
		convergence and then check out the endpoints.

K7	$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots$	The harmonic series – divergent.
K8	$f(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots$	$f(x) = e^x$
K9	$f(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$	$f(x) = \sin x$
K10	$f(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$	$f(x) = \cos x$
K11	$f(x) = 1 + x + x^{2} + x^{3} + \dots + x^{n} + \dots$	$f(x) = \frac{1}{1-x}$ Convergent: (-1, 1)

K12	Given a formula for the <i>n</i> th derivative of $f(x)$. Write the first four terms and the general term for the power series for $f(x)$ centered at $x = c$.	$f(x) = f(c) + f'(c)(x-c) + \frac{f''(c)(x-c)^2}{2!} + \frac{f'''(c)(x-c)^3}{3!} + \dots + \frac{f^{(n)}(c)(x-c)^n}{n!} + \dots$
K13	Let S_4 be the sum of the first 4 terms of an alternating series for $f(x)$. Approximate $ f(x) - S_4 $.	This is the error for the 4 th term of an alternating series which is simply the 5 th term. It will be positive since you are looking for an absolute value.
K14	Write a series for expressions like e^{x^2} .	Rather than go through generating a Taylor polynomial, use the fact that if $f(x) = e^x$, then $f(x^2) = e^{x^2}$. So $f(x) = e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots + \frac{x^n}{n!} + \dots$ and $f(x^2) = e^{x^2} = 1 + x^2 + \frac{x^4}{2} + \frac{x^6}{3!} + \frac{x^8}{4!} + \dots + \frac{x^{2n}}{n!} + \dots$