\qquad
Volume of Known Cross Sections

Use the given information to calculate the volume of the figures formed.

1. The base of the figure is the region bounded by the x -axis and the functions $y=\sqrt{x}$ and $x=9$. Bases of cross sections are perpendicular to the x -axis. Find the volume if the cross sections are:
a. Squares
b. Semicircles
c. Isosceles Right Triangles
d. Equilateral Triangles
2. The base of the figure is the region bounded by the graphs of $y=4-x^{2}$ and the x-axis. Bases of cross sections are perpendicular to the x -axis. Find the volume if the cross sections are:
a. Squares
b. Semicircles
c. Isosceles Right Triangles
d. Equilateral Triangles
3. The base of the figure is the region bounded by the graphs of $y=\sqrt[3]{x}$ and $y=3$ in the first quadrant. Bases of cross sections are perpendicular to the y-axis. Find the volume if the cross sections are:
a. Squares
b. Semicircles
c. Isosceles Right Triangles
d. Equilateral Triangles
4. The base of the solid is the region enclosed by the curve $f(x)=\sqrt{4-x}$, the x-axis, and the y axis. Cross sections are perpendicular to the y axis with the diameter in the base.
a. Squares
b. Semicircles
c. Isosceles Right Triangles
d. Equilateral Triangles
5. The base of a solid is the elliptical region with boundary curve $9 x^{2}+4 y^{2}=36$. Cross sections perpendicular to the x-axis are isosceles right triangles with hypotenuse in the base. Find the volume of the solid.
6. The base of a solid is a region bounded by the curves $y=x^{2}$ and $y=1$. Cross sections perpendicular to the x -axis are semicircles. Find the volume of the solid.
7. The base of a solid is the region bounded by the curves $y=x^{2}+3$ and $y=x$ on the interval [-2, 5]. Cross sections perpendicular to the x-axis are equilateral triangles. Find the volume of the solid.
8. The base of a solid is the region bounded by the graph of $f(x)=x^{2}$ and $g(x)=8-x^{2}$.
a. Find the volume of the solid if all cross sections perpendicular to the x -axis are rectangles, where the height is twice the base.
b. Find the volume of the solid if all cross sections perpendicular to the y-axis are squares.
9. The base of a solid is the region bounded by the graphs of $y=1 / \sqrt{x}$ and $y=-1 / \sqrt{x}$ and the lines $x=1$ and $x=4$. The cross sections perpendicular to the x axis are right isosceles triangles with a leg in the base. Find the volume of the solid.
10. Let R be the region in Quadrant I bounded by the graph of $y=e^{x}$, the y-axis, and the horizontal line $y=4$. If R is the base of a solid with cross section perpendicular to the y-axis, find the volume of the solid with semicircle cross sections.
