Use the given information to calculate the volume of the figures formed.

- 1. The base of the figure is the region bounded by the x-axis and the functions $y = \sqrt{x}$ and x = 9. Bases of cross sections are perpendicular to the x-axis. Find the volume if the cross sections are:
 - a. Squares
 - b. Semicircles
 - c. Isosceles Right Triangles
 - d. Equilateral Triangles
- 2. The base of the figure is the region bounded by the graphs of $y = 4 x^2$ and the x axis. Bases of cross sections are perpendicular to the x-axis. Find the volume if the cross sections are:
 - a. Squares
 - b. Semicircles
 - c. Isosceles Right Triangles
 - d. Equilateral Triangles
- 3. The base of the figure is the region bounded by the graphs of $y = \sqrt[3]{x}$ and y = 3 in the first quadrant. Bases of cross sections are perpendicular to the y-axis. Find the volume if the cross sections are:
 - a. Squares
 - b. Semicircles
 - c. Isosceles Right Triangles
 - d. Equilateral Triangles
- 4. The base of the solid is the region enclosed by the curve $f(x) = \sqrt{4 x}$, the x-axis, and the y axis. Cross sections are perpendicular to the y axis with the diameter in the base.
 - a. Squares
 - b. Semicircles
 - c. Isosceles Right Triangles
 - d. Equilateral Triangles

- 5. The base of a solid is the elliptical region with boundary curve $9x^2 + 4y^2 = 36$. Cross sections perpendicular to the x-axis are isosceles right triangles with hypotenuse in the base. Find the volume of the solid.
- 6. The base of a solid is a region bounded by the curves $y = x^2$ and y = 1. Cross sections perpendicular to the x-axis are semicircles. Find the volume of the solid.
- 7. The base of a solid is the region bounded by the curves y = x² + 3 and y = x on the interval [-2, 5]. Cross sections perpendicular to the x-axis are equilateral triangles. Find the volume of the solid.
- 8. The base of a solid is the region bounded by the graph of $f(x) = x^2$ and $g(x) = 8 x^2$.
 - a. Find the volume of the solid if all cross sections perpendicular to the x-axis are rectangles, where the height is twice the base.
 - b. Find the volume of the solid if all cross sections perpendicular to the y-axis are squares.
- 9. The base of a solid is the region bounded by the graphs of $y = 1/\sqrt{x}$ and $y = -1/\sqrt{x}$ and the lines x = 1 and x = 4. The cross sections perpendicular to the x axis are right isosceles triangles with a leg in the base. Find the volume of the solid.

10. Let *R* be the region in Quadrant I bounded by the graph of $y = e^x$, the *y*-axis, and the horizontal line y = 4. If R is the base of a solid with cross section perpendicular to the y-axis, find the volume of the solid with semicircle cross sections.