Infinite Sequences and Series

Sequences and Series

- 1. $\sum_{n=1}^{\infty} \frac{(3)^{n+1}}{5^n} =$

 - (A) $\frac{3}{5}$ (B) $\frac{5}{2}$
- (C) $\frac{9}{2}$
- (D) The series diverges

- 2. If $f(x) = \sum_{n=1}^{\infty} (\tan x)^n$, then f(1) =
 - (A) -2.794
- (B) -0.61
- (C) 0.177
- (D) The series diverges

- 3. $\sum_{n=2}^{\infty} \frac{2}{n^2-1} =$
 - (A) 0
- (B) $\frac{1}{2}$
- (C) 1
- (D) $\frac{3}{2}$
- 4. The sum of the geometric series $\frac{2}{21} + \frac{4}{63} + \frac{8}{189} + \dots$ is
 - (A) $\frac{5}{21}$ (B) $\frac{2}{7}$ (C) $\frac{4}{7}$
- (D) The series diverges
- 5. If $S_n = \left(\frac{3^{n-1}}{(4+n)^{20}}\right) \left(\frac{(7+n)^{20}}{3^n}\right)$, to what number does the sequence $\{S_n\}$ converge?
 - (A) $\frac{1}{3}$
- (B) $\frac{7}{4}$
- (C) $\left(\frac{7}{4}\right)^{20}$
- (D) Diverges

6. Which of the following sequences converge?

$$I. \left\{ \frac{\cos^2 n}{(1.1)^n} \right\}$$

II.
$$\left\{\frac{e^n-3}{3^n}\right\}$$

I.
$$\left\{\frac{\cos^2 n}{(1.1)^n}\right\}$$
 II. $\left\{\frac{e^n - 3}{3^n}\right\}$ III. $\left\{\frac{n}{9 + \sqrt{n}}\right\}$

- (A) I only (B) II only (C) III only
 - (D) I and II only

7. Which of the following series converge?

I.
$$\sum_{n=1}^{\infty} \frac{n}{10(n+1)}$$
 II.
$$\sum_{n=1}^{\infty} \arctan n$$
 III.
$$\sum_{n=1}^{\infty} \frac{-6}{(-5)^n}$$

II.
$$\sum_{n=1}^{\infty} \arctan n$$

III.
$$\sum_{n=1}^{\infty} \frac{-6}{(-5)^n}$$

- (A) I only
- (B) II only
- (C) III only (D) II and III only

Free Response Questions

8. Find the sum of the series $\sum_{n=1}^{\infty} \left(\frac{3}{n(n+3)} + \frac{1}{7^n} \right).$

Integral Test and P-Series

- 1. If $\int_{1}^{\infty} \frac{dx}{x^2 + 1} = \frac{\pi}{4}$, then which of the following must be true?
 - I. $\sum_{n=1}^{\infty} \frac{1}{n^2+1}$ diverges.
 - II. $\sum_{n=1}^{\infty} \frac{1}{n^2+1}$ converges.
 - III. $\sum_{n=1}^{\infty} \frac{1}{n^2 + 1} = \frac{\pi}{4}$
 - (A) none
- (B) I only
- (C) II only
- (D) II and III only
- 2. What are all values of p for which $\int_{1}^{\infty} \frac{1}{\sqrt[3]{r^{p}}}$ converges?
 - (A) P < -3
 - (B) P < -1
 - (C) P > 1
 - (D) P > 3
- 3. Which of the following series converge?
- I. $\sum_{n=1}^{\infty} \frac{n}{2n^2+1}$ II. $\sum_{n=1}^{\infty} ne^{-n^2}$ III. $\sum_{n=2}^{\infty} \frac{1}{x \ln x}$
- (A) I only
- (B) II only
- (C) III only
- (D) I and II only
- 4. What are all values of p for which $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^p + 1}$ converges?
 - (A) p > 0
- (B) $p > \frac{1}{2}$ (C) p > 1
- (D) $p > \frac{3}{2}$

- 5. What are all values of k for which the series $1 + (\sqrt{2})^k + (\sqrt{3})^k + (\sqrt{4})^k + \dots + (\sqrt{n})^k + \dots$ converges?
 - (A) k < -2
- (B) k < -1
- (C) k > 1
- (D) k > 2

6. Determine whether the following series converge or diverge.

(a)
$$1 + \frac{1}{8} + \frac{1}{27} + \frac{1}{64} + \cdots$$

(b)
$$1 + \frac{1}{(\sqrt[3]{2})^2} + \frac{1}{(\sqrt[3]{3})^2} + \frac{1}{(\sqrt[3]{4})^2} + \cdots$$

Comparison Tests

1. Which of the following series converge?

I.
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + n + 3}$$
 II. $\sum_{n=1}^{\infty} \frac{\cos^2 n}{n^2 + 2}$

II.
$$\sum_{n=1}^{\infty} \frac{\cos^2 n}{n^2 + 2}$$

III.
$$\sum_{n=1}^{\infty} \frac{1+4^n}{3^n}$$

- (A) I only
- (B) II only
- (C) III only
- (D) I and II only

2. Which of the following series diverge?

I.
$$\sum_{n=1}^{\infty} \frac{1}{n!}$$

II.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}+2}$$

III.
$$\sum_{n=1}^{\infty} \sin(\frac{1}{n})$$

- (A) I only
- (B) II only
- (C) II and III only
- (D) I, II, and III

3. Which of the following series converge?

I.
$$\sum_{n=1}^{\infty} \frac{n^{3/2}}{3n^3 + 7}$$

II.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^4 + 1}}$$

III.
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$

- (A) I only
- (B) I and II only
- (C) I and III only
- (D) I, II, and III
- 4. Which of the following series cannot be shown to converge using the limit comparison test with the series $\sum_{n=1}^{\infty} \frac{1}{2^n}$?

(A)
$$\sum_{n=1}^{\infty} \frac{1}{2^n - 1}$$

(B)
$$\sum_{n=1}^{\infty} \frac{n}{2^n}$$

(C)
$$\sum_{n=1}^{\infty} \frac{2n}{2^{n+1}\sqrt{n^2+1}}$$

(D)
$$\sum_{n=1}^{\infty} \frac{2n^2 - 3n}{2^n (n^2 + n - 100)}$$

5. Determine whether the following series converge or diverge.

(a)
$$\sum_{n=1}^{\infty} \frac{\cos(2n)}{1 + (1.6)^n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{4^n}{2^n + 3^n}$$

Multiple Choice Questions

- 1. Which of the following series converge?
 - I. $\sum_{n=1}^{\infty} \frac{(-1)^n \sqrt{n}}{n}$ II. $\sum_{n=1}^{\infty} \frac{(-1)^n}{\ln n}$
- III. $\sum_{n=1}^{\infty} \cos(n\pi)$

- (A) I only
- (B) II only
- (C) III only
- (D) I and II only

- 2. Which of the following series converge?

 - I. $\sum_{n=1}^{\infty} (-1)^n \cos(\frac{\pi}{n})$ II. $\sum_{n=1}^{\infty} \sin(\frac{2n-1}{2})\pi$ III. $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2n}{n^2+1}$

- (A) I only
- (B) II only
- (C) III only
- (D) I and II only
- 3. For what integer k, k > 1, will both $\sum_{n=1}^{\infty} \frac{(-1)^{kn}}{\sqrt{n}}$ and $\sum_{n=1}^{\infty} \frac{n^2 \sqrt{n}}{n^k + 1}$ converge?
 - (A) 3
- (B) 4
- (C) 5
- (D) 6
- 4. Let $s = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^3}$ and s_n be the sum of the first *n* terms of the series. If $|s s_n| < \frac{1}{500}$ what is the smallest value of n?
 - (A) 6
- (B) 7
- (C) 8
- (D) 9

5. Which of the following series converge?

I.
$$\sum_{n=2}^{\infty} (-1)^n \sqrt[n]{3}$$

II.
$$\sum_{n=1}^{\infty} \frac{3^{n+1}}{\pi^n}$$

III.
$$\sum_{n=1}^{\infty} (\tan^{-1}(n+1) - \tan^{-1}(n))$$

- (A) I only
- (B) II only
- (C) III only
- (D) II and III only
- 6. Which of the following statements about the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(n+3)}{n^2}$ is true?
 - (A) The series converges conditionally.
 - (B) The series converges absolutely.
 - (C) The series converges but neither conditionally nor absolutely.
 - (D) The series diverges.
- 7. Which of the following series is absolutely convergent?

(A)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} \sqrt{n}}{n}$$

(B)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}n}{n^2\sqrt{n}}$$

(C)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}n}{n^2 - \sqrt{n}}$$

(D)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}(n^2+1)}{n^3}$$

- 8. An alternating series is given by $S = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2 + 3}$. Let S_3 be the sum of the first three terms of the given alternating series. Of the following, which is the smallest number M for which the alternating series error bound guarantees that $|S S_3| \le M$?
 - (A) $\frac{1}{4}$
- (B) $\frac{1}{7}$
- (C) $\frac{1}{19}$
- (D) $\frac{1}{28}$

9. Let
$$f(x) = 1 - \frac{3x}{2!} + \frac{9x^2}{4!} - \frac{27x^3}{6!} + \dots + \frac{(-1)^n (3x)^n}{(2n)!} + \dots$$

Use the alternating series error bound to show that $1 - \frac{3}{2!} + \frac{9}{4!}$ approximates f(1) with an error less than $\frac{1}{20}$.

Ratio Test

1. Which of the following series converge?

I.
$$\sum_{n=1}^{\infty} \frac{n!}{2^n}$$

II.
$$\sum_{n=1}^{\infty} \frac{n}{3^n}$$

III.
$$\sum_{n=1}^{\infty} n \left(\frac{2}{3}\right)^n$$

- (A) I only
- (B) II only
- (C) II and III only
- (D) I, II, and III

2. Which of the following series converge?

I.
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$

II.
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$$

III.
$$\sum_{n=1}^{\infty} \frac{n^9}{9^n}$$

- (A) I only
- (B) II only
- (C) I and II only
- (D) I, II, and III

Free Response Questions

3. Determine whether the following series converge or diverge.

(a)
$$\sum_{n=1}^{\infty} \frac{n!}{n \cdot 2^n}$$

(b)
$$\sum_{n=0}^{\infty} \frac{\cos^n x}{2^n}$$

(c)
$$\sum_{k=1}^{\infty} \frac{3^k k!}{(k+3)!}$$

Power Series Convergence

1. What are all values of x for which the series
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{n^3}$$
 converges?

$$(A) -1 < x < 1$$

(B)
$$-1 \le x \le 1$$

(C)
$$-1 < x \le 1$$

(A)
$$-1 < x < 1$$
 (B) $-1 \le x \le 1$ (C) $-1 < x \le 1$ (D) $-1 \le x < 1$

2. What are all values of x for which the series
$$\sum_{n=0}^{\infty} \frac{n(x-2)^n}{3^n}$$
 converges?

(A)
$$-1 < x < 5$$

(B)
$$-1 < x \le 5$$

(A)
$$-1 < x < 5$$
 (B) $-1 < x \le 5$ (C) $-2 \le x < 4$ (D) $-2 < x \le 4$

(D)
$$-2 < x \le 4$$

3. What are all values of x for which the series
$$\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!}$$
 converges?

(A)
$$0 < x < 2$$

(B)
$$0 \le x < 2$$

(A)
$$0 < x < 2$$
 (B) $0 \le x < 2$ (C) $-1 < x \le 2$ (D) All real x

4. What are all values of x for which the series
$$\sum_{n=2}^{\infty} \frac{(-1)^n x^n}{2^n \sqrt{n}}$$
 converges?

(A)
$$-2 < x < 2$$

(B)
$$-2 \le x < 2$$

(C)
$$-2 < x \le 2$$

(A)
$$-2 < x < 2$$
 (B) $-2 \le x < 2$ (C) $-2 < x \le 2$ (D) All real x

5. What are all values of x for which the series
$$\sum_{n=1}^{\infty} n!(3x-2)^n$$
 converges?

(A) No values of x (B)
$$(-\infty, \frac{2}{3}]$$
 (C) $x = \frac{2}{3}$ (D) $[\frac{2}{3}, \infty)$

(B)
$$(-\infty, \frac{2}{3}]$$

(C)
$$x = \frac{2}{3}$$

(D)
$$[\frac{2}{3}, \infty)$$

Free Response Questions

6. Find the radius of convergence and the interval of convergence for the series

$$\sum_{n=1}^{\infty} \frac{2 \cdot 4 \cdot 6 \cdot \cdots \cdot (2n)}{1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2n-1)} x^{n+1}.$$

Representations of Functions as Power Series

1. The power series expansion for $\frac{1}{1-x}$ is $\sum_{n=0}^{\infty} x^n$. Which of the following is a power series expansion for $\frac{1}{1+x^3}$?

(A)
$$1+x^2+x^4+x^6+\cdots$$

(B)
$$1-x^3+x^6-x^9+\cdots$$

(C)
$$1+\frac{x^3}{3}+\frac{x^6}{6}+\frac{x^9}{9}+\cdots$$

(D)
$$1 - \frac{x^3}{3} + \frac{x^6}{6} - \frac{x^9}{9} + \cdots$$

2. The power series expansion for $\frac{1}{1-x}$ is $\sum_{n=0}^{\infty} x^n$. Which of the following is a power series expansion for $\frac{1}{2-x}$?

(A)
$$1+\frac{x}{2}+\frac{x^2}{4}+\frac{x^3}{8}+\cdots$$

(B)
$$1-\frac{x}{2}+\frac{x^2}{4}-\frac{x^3}{8}+\cdots$$

(C)
$$\frac{1}{2} + \frac{x}{4} + \frac{x^2}{8} + \frac{x^3}{16} + \cdots$$

(D)
$$\frac{1}{2} - \frac{x}{4} + \frac{x^2}{8} - \frac{x^3}{16} + \cdots$$

3. If
$$f(x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{(x-2)^n}{n!} = (x-2) - \frac{(x-2)^2}{2!} + \frac{(x-2)^3}{3!} - \frac{(x-2)^4}{4!} + \cdots$$
, which of the following represents $f'(x)$?

(A)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{(x-2)^{n-1}}{n!}$$

(B)
$$\sum_{n=1}^{\infty} (-1)^n \frac{(x-2)^{n-1}}{(n+1)!}$$

(C)
$$\sum_{n=0}^{\infty} (-1)^{n+1} \frac{(x-2)^{n-1}}{n!}$$

(D)
$$\sum_{n=0}^{\infty} (-1)^n \frac{(x-2)^n}{n!}$$

- 4. A power series expansion for $f(x) = \frac{1}{1-x}$ can be obtained from the sum of the geometric series
 - $\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}$, if you let a=1 and r=x. Let g(x) be defined as $g(x) = \frac{1}{1+x}$.
 - (a) Write the first four terms and the general term of the power series expansion of g(x).
 - (b) Write the first four terms and the general term of the power series expansion of $g(x^2)$.
 - (c) Write the first four terms and the general term of the power series expansion of h, where $h(x) = \int g(x^2) dx$ and h(0) = 0.
 - (d) Find the value of h(1).

5. The function f is defined by the power series

$$f(x) = \sum_{n=0}^{\infty} (-1)^n \frac{(2n+1)x^{2n}}{(2n)!} = 1 - \frac{3x^2}{2!} + \frac{5x^4}{4!} - \frac{7x^6}{6!} + \dots + (-1)^n \frac{(2n+1)x^{2n}}{(2n)!} + \dots$$

for all real numbers x.

- (a) Find f'(0) and f''(0). Determine whether f has a local maximum, a local minimum, or neither at x = 0. Give a reason for your answer.
- (b) Show that $1 \frac{3}{2!} + \frac{5}{4!}$ approximates f(1) with an error less than $\frac{1}{100}$.
- (c) Let g be the function given by $g(x) = \int_0^x f(t) dt$. Write the first four terms and the general term of the power series expansion of $\frac{g(x)}{x}$.

Taylor Polynomial and Lagrange Error Bound

- 1. Let $P(x) = \frac{1}{3} \frac{2}{3}x + \frac{2}{3}x^2 \frac{4}{9}x^3 + \frac{2}{9}x^4$ be the fourth-degree Taylor polynomial for the function fabout x = 0. What is the value of $f^{(4)}(0)$?
 - (A) $-\frac{32}{3}$ (B) $-\frac{4}{3}$ (C) $\frac{8}{9}$
- (D) $\frac{16}{3}$
- 2. Let $P(x) = 4 3x^2 + \frac{13}{12}x^4 \frac{121}{360}x^6$ be the sixth-degree Taylor polynomial for the function fabout x = 0. What is the value of f'''(0)?
 - (A) $-\frac{121}{15}$ (B) $-\frac{3}{2}$
- (C) 0
- (D) $\frac{121}{15}$
- 3. Let f be a function that has derivatives of all orders for all real numbers. If f(1) = 2, f'(1) = -3, f''(1) = 4, and f'''(1) = -9, which of the following is the third-degree Taylor polynomial for fabout x = 1?
 - (A) $P(x) = 2-3(x-1)+2(x-1)^2-\frac{3}{2}(x-1)^3$
 - (B) $P(x) = 2-3(x+1)+2(x+1)^2-\frac{3}{2}(x+1)^3$
 - (C) $P(x) = 2-3(x-1)+4(x-1)^2-9(x-1)^3$
 - (D) $P(x) = 2-3(x+1)+2(x+1)^2-3(x+1)^3$

4. The third-degree Taylor polynomial of xe^x about x = 0 is

(A)
$$P_3(x) = x - \frac{1}{2}x^2 + \frac{1}{6}x^3$$

(B)
$$P_3(x) = x + x^2 + \frac{1}{2}x^3$$

(C)
$$P_3(x) = x + x^2 - \frac{1}{3}x^3$$

(D)
$$P_3(x) = 1 - x + \frac{1}{2}x^2 - \frac{1}{6}x^3$$

5. The second-degree Taylor polynomial of $\sec x$ about $x = \frac{\pi}{4}$ is

(A)
$$P_2(x) = 1 + \sqrt{2}(x - \frac{\pi}{4}) + \sqrt{2}(x - \frac{\pi}{4})^2$$

(B)
$$P_2(x) = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}(x - \frac{\pi}{4}) + \frac{3\sqrt{2}}{3!}(x - \frac{\pi}{4})^2$$

(C)
$$P_2(x) = \sqrt{2} + \sqrt{2}(x - \frac{\pi}{4}) + \frac{3\sqrt{2}}{2!}(x - \frac{\pi}{4})^2$$

(D)
$$P_2(x) = 1 + \sqrt{2}(x - \frac{\pi}{4}) + \frac{3\sqrt{2}}{3!}(x - \frac{\pi}{4})^2$$

- 6. A function f has derivatives of all orders at x = 0. Let P_n denote the nth-degree Taylor polynomial for f about x = 0. It is known that $f(0) = \frac{1}{3}$ and $f''(0) = \frac{4}{3}$. If $P_2(\frac{1}{2}) = \frac{1}{8}$, what is the value of f'(0)?
 - (A) $-\frac{3}{9}$
- (B) $-\frac{3}{4}$ (C) $-\frac{5}{4}$ (D) $-\frac{3}{2}$

- 7. Let $P(x) = 3 2(x 2) + 5(x 2)^2 12(x 2)^3 + 3(x 2)^4$ be the fourth-degree Taylor polynomial for the function f about x = 2. Assume f has derivatives of all orders for all real numbers.
 - (a) Find f(2) and f'''(2).
 - (b) Write the third-degree Taylor polynomial for f' about 2 and use it to approximate f'(2.1).
 - (c) Write the fourth-degree Taylor polynomial for $g(x) = \int_{2}^{x} f(t) dt$ about 2.
 - (d) Can f(1) be determined from the information given? Justify your answer.
- 8. Let f be the function given by $f(x) = \sin(2x) + \cos(2x)$, and let P(x) be the third-degree Taylor polynomial for f about x = 0.
 - (a) Find P(x).
 - (b) Find the coefficient of x^{19} in the Taylor series for f about x = 0.
 - (c) Use the Lagrange error bound to show that $\left| f(\frac{1}{5}) P(\frac{1}{5}) \right| < \frac{1}{100}$
 - (d) Let h be the function given by $h(x) = \int_0^x f(t) dt$. Write the third-degree Taylor polynomial for h about x = 0.

Taylor and Maclaurin Series

1. A series expansion of $\frac{\arctan x}{x}$ is

(A)
$$1 - \frac{x}{3} + \frac{x^3}{5} - \frac{x^5}{7} + \cdots$$

(B)
$$1-\frac{x^2}{3}+\frac{x^4}{5}-\frac{x^6}{7}+\cdots$$

(C)
$$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

(D)
$$x - \frac{x^3}{3} + \frac{x^4}{5} - \frac{x^6}{7} + \cdots$$

2. The coefficient of x^3 in the Taylor series for e^{-2x} about x = 0 is

(A)
$$-\frac{4}{3}$$

(A)
$$-\frac{4}{3}$$
 (B) $-\frac{2}{3}$ (C) $-\frac{1}{3}$ (D) $\frac{4}{3}$

(C)
$$-\frac{1}{3}$$

(D)
$$\frac{4}{3}$$

3. A function f has a Maclaurin series given by $-\frac{x^4}{3!} + \frac{x^6}{5!} - \frac{x^8}{7!} + \dots + \frac{(-1)^n x^{2n+2}}{(2n+1)!} + \dots$ Which of the following is an expression for f(x)?

(A)
$$x^3 e^x - x^2$$

(B)
$$x \ln x - x^2$$

(C)
$$\tan^{-1} x - x$$

(D)
$$x \sin x - x^2$$

- 4. A series expansion of $\frac{x-\sin x}{x^2}$ is
 - (A) $\frac{1}{2!} \frac{x^2}{4!} + \frac{x^4}{6!} + \dots + \frac{(-1)^{n+1}x^{2n-2}}{(2n)!} + \dots$
 - (B) $\frac{x}{2!} \frac{x^3}{4!} + \frac{x^5}{6!} + \dots + \frac{(-1)^{n+1}x^{2n+1}}{(2n)!} + \dots$
 - (C) $\frac{x}{3!} \frac{x^3}{5!} + \frac{x^5}{7!} + \dots + \frac{(-1)^{n+1}x^{2n-1}}{(2n+1)!} + \dots$
 - (D) $\frac{x^2}{3!} \frac{x^4}{5!} + \frac{x^6}{7!} + \dots + \frac{(-1)^{n+1}x^{2n}}{(2n+1)!} + \dots$
- 5. $\sum_{n=0}^{\infty} \frac{(-1)^n x^{n+2}}{n!}$ is the Taylor series about zero for which of the following functions?
 - (A) $x \sin x$
- (B) $x \cos x$
- (C) x^2e^{-x}
- (D) $x \ln(x+1)$
- 6. The graph of the function represented by the Maclaurin series $x \frac{x^3}{3} + \frac{x^5}{5} \frac{x^7}{7} + \dots + \frac{(-1)^n x^{2n+1}}{2n+1} + \dots$ intersects the graph of $y = e^{-x}$ at x =
 - (A) 0.495
- (B) 0.607
- (C) 1.372
- (D) 2.166
- 7. What is the coefficient of x^4 in the Taylor series for $\cos^2 x$ about x = 0?
 - (A) $\frac{1}{12}$
- (B) $\frac{1}{9}$
- (C) $\frac{1}{6}$ (D) $\frac{1}{3}$
- 8. The fifth-degree Taylor polynomial for $\tan x$ about x = 0 is $x + \frac{1}{3}x^3 + \frac{2}{15}x^5$. If f is a function such that $f'(x) = \tan(x^2)$, then the coefficient of x^7 for f(x) about x = 0 is
 - (A) $\frac{1}{21}$
- (B) $\frac{3}{42}$
- (C) 0

(D) $\frac{1}{7}$

- 9. The Maclaurin series for a function f is given by $\sum_{n=1}^{\infty} \frac{(-2)^{n-1}}{n+1} x^n = \frac{1}{2} x \frac{2}{3} x^2 + x^3 \dots + \frac{(-2)^{n-1}}{n+1} x^n + \dots$ Which of the following is the third-degree Taylor polynomial for $g(x) = \cos x \cdot f(x)$ about x = 0?
 - (A) $x \frac{1}{2}x^2 \frac{2}{3}x^3$
 - (B) $1 \frac{1}{2}x^2 + \frac{2}{3}x^3$
 - (C) $\frac{1}{2}x \frac{2}{3}x^2 + \frac{3}{4}x^3$
 - (D) $\frac{1}{2}x \frac{11}{12}x^2 + x^3$
- 10. The Maclaurin series for the function f is given by
 - $f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n+1)!} = 1 \frac{x^2}{3!} + \frac{x^4}{5!} \dots + \frac{(-1)^n x^{2n}}{(2n+1)!} + \dots \text{ on its interval of convergence.}$

Which of the following statements about f must be true?

- (A) f has a relative minimum at x = 0.
- (B) f has a relative maximum at x = 0.
- (C) f does not have a relative maximum or a relative minimum at x = 0.
- (D) f has a point of inflection at x = 0.

Free Response Questions

- 11. Let f be the function given by $f(x) = e^{-x}$.
 - (a) Write the first four terms and the general term of the Taylor series for f about x = 0.
 - (b) Use the result from part (a) to write the first four nonzero terms and the general term of the series expansion about x = 0 for $g(x) = \frac{1 x f(x)}{x}$.
 - (c) For the function g in part (b), find g'(-1) and use it to show that $\sum_{n=1}^{\infty} \frac{n}{(n+1)!} = 1$.

12. The Maclaurin series for
$$f(x)$$
 is given by $f(x) = \frac{x}{2!} - \frac{x^3}{4!} + \frac{x^5}{6!} + \dots + \frac{(-1)^{n+1} x^{2n-1}}{(2n)!} + \dots$

The Maclaurin series for
$$g(x)$$
 is given by $g(x) = 1 - \frac{x}{2} + \frac{x^2}{3} - \frac{x^3}{4} + \dots + \frac{(-1)^n x^n}{n+1} + \dots$

- (a) Find f'''(0) and $f^{(15)}(0)$.
- (b) Find the interval of convergence of the Maclaurin series for g(x).
- (c) The graph of y = f(x) + g(x) passes through the point (0,1). Find y'(0) and y''(0) and determine whether y has a relative minimum, a relative maximum, or neither at x = 0. Give a reason for your answer.