CALCULUS AB — PRACTICE EXAM Name Anigwors
SECTION II, PART A
Calculator Active
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1. In the figure above, R is the shaded region in the first quadrant bounded by the graph of y = 4In(3 - x), the

(a) Find the area of R.
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(b) Find the volume of the solid generated when R is revolved about the horizontal line y = 8.
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(c) The region R is the base of a solid. For this solid. each cross section perpendicular to the x-axis is a square.
Find the volume of the solid.
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(d) Set up but do not integrate an integral expression to find the value of a vertical line x = k that divides
the region Rinto two regions of equal area.
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. The tide removes sand from Sandy Point Beach at a rate modeled by the function R, given by
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A pumping station adds sand to the beach at a rate modeled by the function §, given by
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Both R(t) and S(f) have units of cubic yards per hour and 1 is measured in hours for 0 £ ¢ < 6. Attime 7 = 0,
the beach contains 2500 cubic yards of sand.

(a) How much sand will the tide remove from the beach during this 6-hour period? Indicate units of measure.
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(b) Write an expression for ¥(7), the total number of cubic yards of sand on the beach at time 1.
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(c) Find the rate at which the total amount of sand on the beach is changing at time 7 = 4.
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(d) For 0 £ ¢ <6, at what time ¢ is the amount of sand on the beach a minimum? What is the minimum value?
Justify your answers.
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CALCULUS AB — PRACTICE EXAM Name A».wo/ﬁ
SECTION II, PART B

Non — Calculator
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3. Johanna jogs along a straight path. For 0 < ¢ < 40, Johanna's velocity is given by a differentiable function v.

Selected values of v(r). where ¢ is measured in minutes and (1) is measured in meters per minute, are given in
the table above. '

(a) Use the data in the table to estimaie the value of v'(16).
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(b) Using correct units, explain the meaning of the definite integral Jo [¥(1)] dt in the context of the problem.

40
Approximate the value of Jo |W(1)| dt using a right Riemann sum with the four subintervals indicated in the
table.
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(c) Bob is riding his bicycle along the same path. For 0 £ 1 £ 10, Bob’s velocity is modeled by

B(t) = * = 61> + 300, where f is measured in minutes and B(f) is measured in meters per minute.

Find Bob’s acceleration at time 1 = 5.
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(d) Based on the model B from part (¢), find Bob’s average velocity during the interval 0 < ¢t < 10,
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Graphof f
4. Let f be the continuous function defined on [—4, 3] whose graph, consisting of three line segments and a
X
semicircle centered at the origin, is given above. Let g be the function given by g(x) = L flr) dr

(a) Find the values of g(2) and g(-2).

1

_3(23 =Lz$(’c)a\t il(')(%) 5 -%

SRS [‘{(')G)* Ao

- T=3
113C1)
Z"{;:c)(-?—\

) 2
(b) For each of g’(-3) and g”(-3), find the value or state that it does not exist.
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(c) Find the x-coordinate of each point at which the graph of g has a horizontal tangent line. For each of these
points, determine whether g has a relative minimum, relative maximum, or neither a minimum nor a
maximum at the point. Justify your answers.
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(d) For —4 < x < 3, find all values of x for which the graph of g has a point of inflection. Explain your
reasoning.
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5. Consider the differential equation — = —==,

dx ¥

{a} On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated.
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(b) Let y = f(x) be the particular solution to the differential equation with the initial condition f(1) = —1.
Write an equation for the line tangent to the graph of f at (1, —1} and use it to approximate f(1.1).
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{c} Find the particular solution y = f(x) to the given differential equation with the initial condition

f{1)=-1.
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6. Two particles move along the x-axis. For 0 < 7 £ 6, the position of particle P attime 7 is given by

p(r) 280::(1; ), while the position of particle R at time [ is given by r(1) = * —6r° + 91 + 3.

(a) For 0 <t < 6. find all times ¢ during which particle R is moving to the right.
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(b} For 0 <1 < 6, find all times ¢ during which the two particles travel in opposite directions.
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{c) Find the acceleration of particle P attime ¢ = 3. Is particle P speeding up, slowing down, or doing neither
at time ¢ = 3 7 Explain your reasoning.
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(d) Write, but do not evaluate, an expression for the average distance between the two particles on the interval
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