Free Response – Calculator

Question 1

(a)	$a(1) = \langle x''(1), y''(1) \rangle$ (19.975, -4.546) Speed = $\sqrt{(x'(1))^2 + (y'(1))^2} = 11.678$	2 : $\begin{cases} 1 : acceleration vector \\ 1 : speed \end{cases}$
(b)	Distance = $\int_0^1 \sqrt{(x'(t))^2 + (y'(t))^2} dt = 6.704$ (or 6.703)	3 : $\begin{cases} 2 : integral \\ 1 : answer \end{cases}$
(c)	$y(1) = 5 + \int_0^1 y'(t) dt = 4.057 \text{ (or } 4.056)$	2 : $\begin{cases} 1 : integral \\ 1 : answer \end{cases}$
(d)	$\frac{dy}{dx} = \frac{y'(t)}{x'(t)} = \frac{10\cos(1+\sqrt{t})}{-12\sin(2t^2)} = \frac{1}{2}$ $t = 1.072$	2 : { 1 : equation 1 : answer

(a) Area =
$$\frac{1}{2} \int_0^{\pi/2} (2 + \sin(4\theta) + \cos(\theta))^2 d\theta$$

= 6.194 (or 6.193)

(b)
$$2 + \sin(4\theta) + \cos(\theta) = 2 \implies \theta = 0.942478$$

Let $c = 0.942478$

Area =
$$\frac{1}{2} \int_{c}^{\pi/2} \left[2^2 - (2 + \sin(4\theta) + \cos(\theta))^2 \right] d\theta$$

= 0.456

(c)
$$r'(\theta) = 4\cos(4\theta) - \sin(\theta) = 0$$

 $\Rightarrow \theta = 0.370064, 1.237726$

θ	$r(\theta)$
0	3
0.370064	3.928208
1.237726	1.355256
$\pi/2$	2

 $\theta=0.370\,$ corresponds to the point on the curve with the greatest distance from the origin.

$2: \begin{cases} 1 : integrand \\ 1 : answer \end{cases}$
$4: \begin{cases} 1 : \text{value of } \theta \\ 2 : \text{integrand} \\ 1 : \text{answer} \end{cases}$
3 : $\begin{cases} 1 : \text{identifies } \theta = 0.370 \text{ as a candidate} \\ 2 : \text{answer with justification} \end{cases}$

Free Response – Non – Calculator

Question 3

(a)
$$C'(3.5) \approx \frac{C(4) - C(3)}{4 - 3} = \frac{12.8 - 11.2}{1} = 1.6 \text{ ounces/min}$$

(b) C is differentiable \Rightarrow C is continuous (on the closed interval)
 $\frac{C(4) - C(2)}{4 - 2} = \frac{12.8 - 8.8}{2} = 2$
Therefore, by the Mean Value Theorem, there is at least
one time $t, 2 < t < 4$, for which $C'(t) = 2$.
(c) $\frac{1}{6} \int_{0}^{6} C(t) dt \approx \frac{1}{6} [2 \cdot C(1) + 2 \cdot C(3) + 2 \cdot C(5)]$
 $= \frac{1}{6} (2 \cdot 5.3 + 2 \cdot 11.2 + 2 \cdot 13.8)$
 $= \frac{1}{6} (60.6) = 10.1 \text{ ounces}$
 $\frac{1}{6} \int_{0}^{6} C(t) dt$ is the average amount of coffee in the cup, in
ounces, over the time interval $0 \le t \le 6$ minutes.
(d) $B'(t) = -16(-0.4)e^{-0.4t} = 6.4e^{-0.4t}$
 $B'(5) = 6.4e^{-0.4(5)} = \frac{6.4}{e^2}$ ounces/min
 $2 : \begin{cases} 1 : \text{ midpoint sum} \\ 1 : \text{ midpoint sum} \\ 1 : \text{ interpretation} \end{cases}$
 $2 : \begin{cases} 1 : B'(t) \\ 1 : B'(5) \end{cases}$

1 : answer

2:

1 : answer

1 : reason

(a)
$$g(3) = \int_{-3}^{3} f(t) dt = 6 + 4 - 1 = 9$$

(b)
$$g'(x) = f(x)$$

The graph of g is increasing and concave down on the intervals -5 < x < -3 and 0 < x < 2 because g' = f is positive and decreasing on these intervals.

(c)
$$h'(x) = \frac{5xg'(x) - g(x)5}{(5x)^2} = \frac{5xg'(x) - 5g(x)}{25x^2}$$

3: $\begin{cases} 2: h'(x) \\ 1: \text{ answer} \end{cases}$

$$h'(3) = \frac{(5)(3)g'(3) - 5g(3)}{25 \cdot 3^2}$$
$$= \frac{15(-2) - 5(9)}{225} = \frac{-75}{225} = -\frac{1}{3}$$

(d)
$$p'(x) = f'(x^2 - x)(2x - 1)$$

 $p'(-1) = f'(2)(-3) = (-2)(-3) = 6$
3 : $\begin{cases} 2 : p'(x) \\ 1 : \text{answer} \end{cases}$

(a)
$$f\left(\frac{1}{2}\right) \approx f(1) + \left(\frac{dy}{dx}\Big|_{(1,0)}\right) \cdot \Delta x$$

 $= 0 + 1 \cdot \left(-\frac{1}{2}\right) = -\frac{1}{2}$
 $f(0) \approx f\left(\frac{1}{2}\right) + \left(\frac{dy}{dx}\Big|_{\left(\frac{1}{2}, -\frac{1}{2}\right)}\right) \cdot \Delta x$
 $\approx -\frac{1}{2} + \frac{3}{2} \cdot \left(-\frac{1}{2}\right) = -\frac{5}{4}$

(b) Since f is differentiable at x = 1, f is continuous at x = 1. So, $\lim_{x \to 1} f(x) = 0 = \lim_{x \to 1} (x^3 - 1)$ and we may apply L'Hospital's Rule.

1

$$\lim_{x \to 1} \frac{f(x)}{x^3 - 1} = \lim_{x \to 1} \frac{f'(x)}{3x^2} = \frac{\lim_{x \to 1} f'(x)}{\lim_{x \to 1} 3x^2} = \frac{1}{3}$$

(c)
$$\frac{dy}{dx} = 1 - y$$
$$\int \frac{1}{1 - y} dy = \int 1 dx$$
$$-\ln|1 - y| = x + C$$
$$-\ln 1 = 1 + C \Rightarrow C = -1$$
$$\ln|1 - y| = 1 - x$$
$$|1 - y| = e^{1 - x}$$
$$f(x) = 1 - e^{1 - x}$$

{ 1 : Euler's method with two steps 1 : answer 2:

 $2: \begin{cases} 1: use of L'Hospital's Rule \\ \cdot \end{cases}$ 1 : answer

```
1 : separation of variables
     1 : antiderivatives
5: \{ 1: constant of integration \}
      1 : uses initial condition
    1 : solves for y
```

Note: max 2/5 [1-1-0-0-0] if no constant of integration Note: 0/5 if no separation of variables

I

(a)	f'(0) = f(0) + 0 + 1 = 3	1 : ta:
	An equation for the tangent line is $y = 3x + 2$.	
(b)	$f''(x) = f'(x) + 1; \ f''(0) = f'(0) + 1 = 3 + 1 = 4$	2:{
	$P_2(x) = 2 + 3x + \frac{4}{2!}x^2 = 2 + 3x + 2x^2$	2 : {
(c)	$f'''(x) = f''(x); \ f'''(0) = f''(0) = 4$	2: {
	$f^{(4)}(x) = f^{\prime\prime\prime\prime}(x); \ f^{(4)}(0) = f^{\prime\prime\prime\prime}(0) = 4$	(
	$P_4(x) = 2 + 3x + \frac{4}{2!}x^2 + \frac{4}{3!}x^3 + \frac{4}{4!}x^4$	
	$= 2 + 3x + 2x^2 + \frac{2}{3}x^3 + \frac{1}{6}x^4$	
(d)	$f^{(n)}(0) = 4$ for $n \ge 2$	ſ

$$f(x) = 2 + 3x + \frac{4}{2!}x^2 + \frac{4}{3!}x^3 + \frac{4}{4!}x^4 + \frac{4}{5!}x^5 + \cdots$$

$$4e^x = 4 + 4x + \frac{4}{2!}x^2 + \frac{4}{3!}x^3 + \frac{4}{4!}x^4 + \frac{4}{5!}x^5 + \cdots$$

Therefore, $f(x) - 4e^x = -2 - x$.

: tangent line equation

$$2: \begin{cases} 1: f''(0) \\ 1: \text{ second-degree Taylor polynomial} \end{cases}$$

2 :
$$\begin{cases} 1 : f'''(0) \text{ and } f^{(4)}(0) \\ 1 : \text{ fourth-degree Taylor polynomial} \end{cases}$$

4:
$$\begin{cases} 1 : f^{(n)}(0) \text{ for } n \ge 2\\ 1 : \text{Taylor series for } f\\ 1 : \text{Taylor series for } e^{x}\\ 1 : \text{polynomial expression} \end{cases}$$