Free Response - Calculator

Question 1

(a) $a(1)=\left\langle x^{\prime \prime}(1), y^{\prime \prime}(1)\right\rangle \quad\langle 19.975,-4.546\rangle$

$$
\text { Speed }=\sqrt{\left(x^{\prime}(1)\right)^{2}+\left(y^{\prime}(1)\right)^{2}}=11.678
$$

(b) Distance $=\int_{0}^{1} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t=6.704($ or 6.703 $)$
(c) $y(1)=5+\int_{0}^{1} y^{\prime}(t) d t=4.057$ (or 4.056)
(d) $\frac{d y}{d x}=\frac{y^{\prime}(t)}{x^{\prime}(t)}=\frac{10 \cos (1+\sqrt{t})}{-12 \sin \left(2 t^{2}\right)}=\frac{1}{2}$
$t=1.072$
$2:\left\{\begin{array}{l}1: \text { acceleration vector } \\ 1: \text { speed }\end{array}\right.$
$3:\left\{\begin{array}{l}2: \text { integral } \\ 1: \text { answer }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { integral } \\ 1: \text { answer }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { equation } \\ 1: \text { answer }\end{array}\right.$

Question 2

(a) Area $=\frac{1}{2} \int_{0}^{\pi / 2}(2+\sin (4 \theta)+\cos (\theta))^{2} d \theta$

$$
=6.194(\text { or } 6.193)
$$

(b) $2+\sin (4 \theta)+\cos (\theta)=2 \Rightarrow \theta=0.942478$

Let $c=0.942478$

Area $=\frac{1}{2} \int_{c}^{\pi / 2}\left[2^{2}-(2+\sin (4 \theta)+\cos (\theta))^{2}\right] d \theta$

$$
=0.456
$$

(c) $r^{\prime}(\theta)=4 \cos (4 \theta)-\sin (\theta)=0$
$\Rightarrow \theta=0.370064,1.237726$

$\theta=0.370$ corresponds to the point on the curve with the greatest distance from the origin.

Free Response - Non - Calculator

Question 3

(a) $C^{\prime}(3.5) \approx \frac{C(4)-C(3)}{4-3}=\frac{12.8-11.2}{1}=1.6$ ounces $/ \mathrm{min}$
(b) C is differentiable $\Rightarrow C$ is continuous (on the closed interval) $\frac{C(4)-C(2)}{4-2}=\frac{12.8-8.8}{2}=2$
Therefore, by the Mean Value Theorem, there is at least one time $t, 2<t<4$, for which $C^{\prime}(t)=2$.
(c) $\frac{1}{6} \int_{0}^{6} C(t) d t \approx \frac{1}{6}[2 \cdot C(1)+2 \cdot C(3)+2 \cdot C(5)]$
$=\frac{1}{6}(2 \cdot 5.3+2 \cdot 11.2+2 \cdot 13.8)$
$=\frac{1}{6}(60.6)=10.1$ ounces
$\frac{1}{6} \int_{0}^{6} C(t) d t$ is the average amount of coffee in the cup, in ounces, over the time interval $0 \leq t \leq 6$ minutes.
(d) $B^{\prime}(t)=-16(-0.4) e^{-0.4 t}=6.4 e^{-0.4 t}$
$B^{\prime}(5)=6.4 e^{-0.4(5)}=\frac{6.4}{e^{2}}$ ounces $/ \mathrm{min}$
$2:\left\{\begin{array}{l}1: \text { approximation } \\ 1: \text { units }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \frac{C(4)-C(2)}{4-2} \\ 1: \text { conclusion, using MVT }\end{array}\right.$
$3:\left\{\begin{array}{l}1: \text { midpoint sum } \\ 1: \text { approximation } \\ 1: \text { interpretation }\end{array}\right.$
$2:\left\{\begin{array}{l}1: B^{\prime}(t) \\ 1: B^{\prime}(5)\end{array}\right.$
(a) $g(3)=\int_{-3}^{3} f(t) d t=6+4-1=9$
(b) $g^{\prime}(x)=f(x)$

The graph of g is increasing and concave down on the intervals $-5<x<-3$ and $0<x<2$ because $g^{\prime}=f$ is positive and decreasing on these intervals.
(c) $h^{\prime}(x)=\frac{5 x g^{\prime}(x)-g(x) 5}{(5 x)^{2}}=\frac{5 x g^{\prime}(x)-5 g(x)}{25 x^{2}}$

$$
\begin{aligned}
h^{\prime}(3) & =\frac{(5)(3) g^{\prime}(3)-5 g(3)}{25 \cdot 3^{2}} \\
& =\frac{15(-2)-5(9)}{225}=\frac{-75}{225}=-\frac{1}{3}
\end{aligned}
$$

(d) $p^{\prime}(x)=f^{\prime}\left(x^{2}-x\right)(2 x-1)$

$$
p^{\prime}(-1)=f^{\prime}(2)(-3)=(-2)(-3)=6
$$

1 : answer
$2:\left\{\begin{array}{l}1: \text { answer } \\ 1: \text { reason }\end{array}\right.$
$3:\left\{\begin{array}{l}2: h^{\prime}(x) \\ 1: \text { answer }\end{array}\right.$
$3:\left\{\begin{array}{l}2: p^{\prime}(x) \\ 1: \text { answer }\end{array}\right.$
(a) $f\left(\frac{1}{2}\right) \approx f(1)+\left(\left.\frac{d y}{d x}\right|_{(1,0)}\right) \cdot \Delta x$

$$
=0+1 \cdot\left(-\frac{1}{2}\right)=-\frac{1}{2}
$$

$$
f(0) \approx f\left(\frac{1}{2}\right)+\left(\left.\frac{d y}{d x}\right|_{\left(\frac{1}{2},-\frac{1}{2}\right)}\right) \cdot \Delta x
$$

$$
\approx-\frac{1}{2}+\frac{3}{2} \cdot\left(-\frac{1}{2}\right)=-\frac{5}{4}
$$

(b) Since f is differentiable at $x=1, f$ is continuous at $x=1$. So, $\lim _{x \rightarrow 1} f(x)=0=\lim _{x \rightarrow 1}\left(x^{3}-1\right)$ and we may apply L'Hospital's Rule.
$\lim _{x \rightarrow 1} \frac{f(x)}{x^{3}-1}=\lim _{x \rightarrow 1} \frac{f^{\prime}(x)}{3 x^{2}}=\frac{\lim _{x \rightarrow 1} f^{\prime}(x)}{\lim _{x \rightarrow 1} 3 x^{2}}=\frac{1}{3}$
(c) $\frac{d y}{d x}=1-y$
$\int \frac{1}{1-y} d y=\int 1 d x$
$-\ln |1-y|=x+C$
$-\ln 1=1+C \Rightarrow C=-1$
$\ln |1-y|=1-x$
$|1-y|=e^{1-x}$
$f(x)=1-e^{1-x}$
$2:\left\{\begin{array}{l}1: \text { Euler's method with two steps } \\ 1: \text { answer }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { use of L'Hospital's Rule } \\ 1: \text { answer }\end{array}\right.$

$$
5:\left\{\begin{array}{l}
1: \text { separation of variables } \\
1: \text { antiderivatives } \\
1: \text { constant of integration } \\
1: \text { uses initial condition } \\
1: \text { solves for } y
\end{array}\right.
$$

Note: $\max 2 / 5[1-1-0-0-0]$ if no constant of integration
Note: $0 / 5$ if no separation of variables

Question 6

(a) $f^{\prime}(0)=f(0)+0+1=3$

An equation for the tangent line is $y=3 x+2$.
(b) $f^{\prime \prime}(x)=f^{\prime}(x)+1 ; f^{\prime \prime}(0)=f^{\prime}(0)+1=3+1=4$
$P_{2}(x)=2+3 x+\frac{4}{2!} x^{2}=2+3 x+2 x^{2}$
(c) $f^{\prime \prime \prime}(x)=f^{\prime \prime}(x) ; f^{\prime \prime \prime}(0)=f^{\prime \prime}(0)=4$

$$
f^{(4)}(x)=f^{\prime \prime \prime}(x) ; f^{(4)}(0)=f^{\prime \prime \prime}(0)=4
$$

$$
P_{4}(x)=2+3 x+\frac{4}{2!} x^{2}+\frac{4}{3!} x^{3}+\frac{4}{4!} x^{4}
$$

$$
=2+3 x+2 x^{2}+\frac{2}{3} x^{3}+\frac{1}{6} x^{4}
$$

(d) $f^{(n)}(0)=4$ for $n \geq 2$
$f(x)=2+3 x+\frac{4}{2!} x^{2}+\frac{4}{3!} x^{3}+\frac{4}{4!} x^{4}+\frac{4}{5!} x^{5}+\cdots$
$4 e^{x}=4+4 x+\frac{4}{2!} x^{2}+\frac{4}{3!} x^{3}+\frac{4}{4!} x^{4}+\frac{4}{5!} x^{5}+\cdots$
Therefore, $f(x)-4 e^{x}=-2-x$.

1 : tangent line equation
$2:\left\{\begin{array}{l}1: f^{\prime \prime}(0) \\ 1: \text { second-degree Taylor polynomial }\end{array}\right.$
$2:\left\{\begin{array}{l}1: f^{\prime \prime \prime}(0) \text { and } f^{(4)}(0) \\ 1: \text { fourth-degree Taylor polynomial }\end{array}\right.$
$4:\left\{\begin{array}{l}1: f^{(n)}(0) \text { for } n \geq 2 \\ 1: \text { Taylor series for } f \\ 1: \text { Taylor series for } e^{x} \\ 1: \text { polynomial expression }\end{array}\right.$

