Question 1

(a) $\left.\frac{d x}{d t}\right|_{t=2}=\frac{2}{e^{2}}$

Because $\left.\frac{d x}{d t}\right|_{t=2}>0$, the particle is moving to the right at time $t=2$.

$$
\left.\frac{d y}{d x}\right|_{t=2}=\frac{d y /\left.d t\right|_{t=2}}{d x /\left.d t\right|_{t=2}}=3.055(\text { or } 3.054)
$$

(b) $x(4)=1+\int_{2}^{4} \frac{\sqrt{t+2}}{e^{t}} d t=1.253$ (or 1.252)
(c) Speed $=\sqrt{\left(x^{\prime}(4)\right)^{2}+\left(y^{\prime}(4)\right)^{2}}=0.575$ (or 0.574)

Acceleration $=\left\langle x^{\prime \prime}(4), y^{\prime \prime}(4)\right\rangle$

$$
=\langle-0.041,0.989\rangle
$$

(d) Distance $=\int_{2}^{4} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t$

$$
=0.651(\text { or } 0.650)
$$

$3:\left\{\begin{array}{l}1: \text { moving to the right with reason } \\ 1: \text { considers } \frac{d y / d t}{d x / d t} \\ 1: \text { slope at } t=2\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { integral } \\ 1: \text { answer }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { speed } \\ 1: \text { acceleration }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { integral } \\ 1: \text { answer }\end{array}\right.$

Question 2

Point of intersection $e^{-3 x}=\sqrt{x} \text { at }(T, S)=(0.238734,0.488604)$	1: Correct limits in an integral in (a), (b), or (c)
$\text { (a) Area } \begin{aligned} & =\int_{T}^{1}\left(\sqrt{x}-e^{-3 x}\right) d x \\ & =0.442 \text { or } 0.443 \end{aligned}$	$2:\left\{\begin{array}{l} 1: \text { integrand } \\ 1: \text { answer } \end{array}\right.$
$\text { (b) Volume } \begin{aligned} & =\pi \int_{T}^{1}\left(\left(1-e^{-3 x}\right)^{2}-(1-\sqrt{x})^{2}\right) d x \\ & =0.453 \pi \text { or } 1.423 \text { or } 1.424 \end{aligned}$	
$\begin{aligned} & \text { (c) Length }=\sqrt{x}-e^{-3 x} \\ & \text { Height }=5\left(\sqrt{x}-e^{-3 x}\right) \\ & \text { Volume }=\int_{T}^{1} 5\left(\sqrt{x}-e^{-3 x}\right)^{2} d x=1.554 \end{aligned}$	$3:\left\{\begin{aligned} & 2: \text { integrand } \\ &<-1> \text { incorrect but has } \\ & \sqrt{x}-e^{-3 x} \\ & \text { as a factor } \\ & 1: \text { answer }\end{aligned}\right.$

(a) Average acceleration of rocket A is

$$
\frac{v(80)-v(0)}{80-0}=\frac{49-5}{80}=\frac{11}{20} \mathrm{ft} / \mathrm{sec}^{2}
$$

(b) Since the velocity is positive, $\int_{10}^{70} v(t) d t$ represents the distance, in feet, traveled by rocket A from $t=10$ seconds to $t=70$ seconds.

A midpoint Riemann sum is

$$
\begin{aligned}
& 20[v(20)+v(40)+v(60)] \\
& =20[22+35+44]=2020 \mathrm{ft}
\end{aligned}
$$

(c) Let $v_{B}(t)$ be the velocity of rocket B at time t.
$v_{B}(t)=\int \frac{3}{\sqrt{t+1}} d t=6 \sqrt{t+1}+C$
$2=v_{B}(0)=6+C$
$v_{B}(t)=6 \sqrt{t+1}-4$

$$
v_{B}(80)=50>49=v(80)
$$

Rocket B is traveling faster at time $t=80$ seconds.
Units of $\mathrm{ft} / \sec ^{2}$ in (a) and ft in (b)

1 : answer
$3:\left\{\begin{array}{l}1: \text { explanation } \\ 1: \text { uses } v(20), v(40), v(60) \\ 1: \text { value }\end{array}\right.$
$4:\left\{\begin{array}{l}1: 6 \sqrt{t+1} \\ 1: \text { constant of integration } \\ 1: \text { uses initial condition } \\ 1: \text { finds } v_{B}(80), \text { compares to } v(80), \\ \quad \text { and draws a conclusion }\end{array}\right.$

1 : units in (a) and (b)

Question 4

(a) $\frac{d^{2} y}{d x^{2}}=3+2 \frac{d y}{d x}=3+2(3 x+2 y+1)=6 x+4 y+5$
(b) If $y=m x+b+e^{r x}$ is a solution, then
$m+r e^{r x}=3 x+2\left(m x+b+e^{r x}\right)+1$.
If $r \neq 0: m=2 b+1, r=2,0=3+2 m$,
so $m=-\frac{3}{2}, r=2$, and $b=-\frac{5}{4}$.
OR
If $r=0: m=2 b+3, r=0,0=3+2 m$,
so $m=-\frac{3}{2}, r=0, b=-\frac{9}{4}$.
(c) $f\left(\frac{1}{2}\right) \approx f(0)+f^{\prime}(0) \cdot \frac{1}{2}=-2+(-3) \cdot \frac{1}{2}=-\frac{7}{2}$
$f^{\prime}\left(\frac{1}{2}\right) \approx 3\left(\frac{1}{2}\right)+2\left(-\frac{7}{2}\right)+1=-\frac{9}{2}$
$f(1) \approx f\left(\frac{1}{2}\right)+f^{\prime}\left(\frac{1}{2}\right) \cdot \frac{1}{2}=-\frac{7}{2}+\left(-\frac{9}{2}\right) \cdot \frac{1}{2}=-\frac{23}{4}$
(d) $g^{\prime}(0)=3 \cdot 0+2 \cdot k+1=2 k+1$
$g(1) \approx g(0)+g^{\prime}(0) \cdot 1=k+(2 k+1)=3 k+1=0$
$k=-\frac{1}{3}$
$2:\left\{\begin{array}{l}1: 3+2 \frac{d y}{d x} \\ 1: \text { answer }\end{array}\right.$
$3:\left\{\begin{array}{l}1: \frac{d y}{d x}=m+r e^{r x} \\ 1: \text { value for } r \\ 1: \text { values for } m \text { and } b\end{array}\right.$
$2:\left\{\begin{array}{l}1 \text { : Euler's method with } 2 \text { steps } \\ 1 \text { : Euler's approximation for } f(1)\end{array}\right.$
$2:\left\{\begin{array}{l}1: g(0)+g^{\prime}(0) \cdot 1 \\ 1: \text { value of } k\end{array}\right.$

Question 5

(a) $g(-3)=2(-3)+\int_{0}^{-3} f(t) d t=-6-\frac{9 \pi}{4}$
$g^{\prime}(x)=2+f(x)$
$g^{\prime}(-3)=2+f(-3)=2$
(b) $g^{\prime}(x)=0$ when $f(x)=-2$. This occurs at $x=\frac{5}{2}$. $g^{\prime}(x)>0$ for $-4<x<\frac{5}{2}$ and $g^{\prime}(x)<0$ for $\frac{5}{2}<x<3$.
Therefore g has an absolute maximum at $x=\frac{5}{2}$.
(c) $g^{\prime \prime}(x)=f^{\prime}(x)$ changes sign only at $x=0$. Thus the graph of g has a point of inflection at $x=0$.
(d) The average rate of change of f on the interval $-4 \leq x \leq 3$ is $\frac{f(3)-f(-4)}{3-(-4)}=-\frac{2}{7}$.
To apply the Mean Value Theorem, f must be differentiable at each point in the interval $-4<x<3$. However, f is not differentiable at $x=-3$ and $x=0$.
$3:\left\{\begin{array}{l}1: g(-3) \\ 1: g^{\prime}(x) \\ 1: g^{\prime}(-3)\end{array}\right.$
$3:\left\{\begin{array}{l}1: \text { considers } g^{\prime}(x)=0 \\ 1: \text { identifies interior candidate } \\ 1: \text { answer with justification }\end{array}\right.$

1 : answer with reason
$2:\left\{\begin{array}{l}1: \text { average rate of change } \\ 1: \text { explanation }\end{array}\right.$

Question 6

(a) $1+(x-1)^{2}+\frac{(x-1)^{4}}{2}+\frac{(x-1)^{6}}{6}+\cdots+\frac{(x-1)^{2 n}}{n!}+\cdots$
$2:\left\{\begin{array}{l}1: \text { first four terms } \\ 1: \text { general term }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { first four terms } \\ 1: \text { general term }\end{array}\right.$
(b) $1+\frac{(x-1)^{2}}{2}+\frac{(x-1)^{4}}{6}+\frac{(x-1)^{6}}{24}+\cdots+\frac{(x-1)^{2 n}}{(n+1)!}+\cdots$
(c) $\lim _{n \rightarrow \infty}\left|\frac{\frac{(x-1)^{2 n+2}}{(n+2)!}}{\frac{(x-1)^{2 n}}{(n+1)!}}\right|=\lim _{n \rightarrow \infty} \frac{(n+1)!}{(n+2)!}(x-1)^{2}=\lim _{n \rightarrow \infty} \frac{(x-1)^{2}}{n+2}=0$

Therefore, the interval of convergence is $(-\infty, \infty)$.
(d) $f^{\prime \prime}(x)=1+\frac{4 \cdot 3}{6}(x-1)^{2}+\frac{6 \cdot 5}{24}(x-1)^{4}+\cdots$

$$
+\frac{2 n(2 n-1)}{(n+1)!}(x-1)^{2 n-2}+\cdots
$$

$3:\left\{\begin{array}{l}1: \text { sets up ratio } \\ 1: \text { computes limit of ratio } \\ 1: \text { answer }\end{array}\right.$
$2:\left\{\begin{array}{l}1: f^{\prime \prime}(x) \\ 1: \text { answer }\end{array}\right.$

Since every term of this series is nonnegative, $f^{\prime \prime}(x) \geq 0$ for all x. Therefore, the graph of f has no points of inflection.

