Taylor's Theorem Practice

1. Find the fourth degree Taylor polynomial, centered at $\mathrm{c}=2$ for $f(x)=x \ln x$. Use the Taylor polynomial to approximate $f(2.1)$. Apply Taylor's Theorem to determine the maximum possible error associated with this approximation.
2. Find the fifth degree Taylor polynomial, centered at $\mathrm{c}=0$ for $f(x)=e^{2 x}$. Use the Taylor polynomial to approximate $f(0.75)$. Apply Taylor's Theorem to determine the maximum possible error associated with this approximation.
3. Find the third degree Taylor polynomial, centered at $\mathrm{c}=0$ for $f(x)=\arctan (x)$. Use the Taylor polynomial to approximate $f(0.4)$. Apply Taylor's Theorem to determine the maximum possible error associated with this approximation.
4. Find the sixth degree Taylor polynomial, centered at $\mathrm{c}=1$ for $f(x)=\frac{1}{x}$. Use the Taylor polynomial to approximate $f(1.2)$. Apply Taylor's Theorem to determine the maximum possible error associated with this approximation.
