AP Calculus

Techniques of Integration

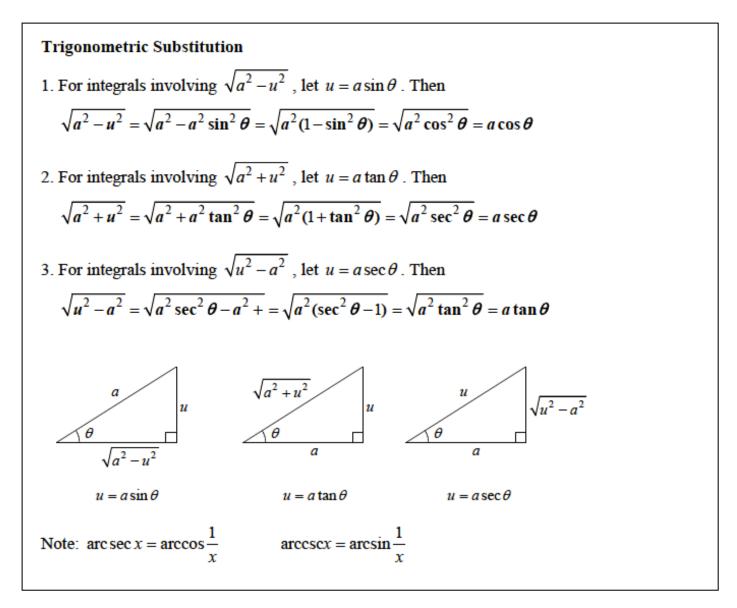
Integration Techniques

Multiple Choice Questions

1.
$$\int \frac{1+\sin x}{\cos^2 x} dx =$$

(A) $\tan x - \sec x \tan x + C$
(B) $\tan x + \sec x + C$
(C) $\tan x + \sec^2 x + C$
(D) $\ln(1 + \cos^2 x) + C$

$$2. \quad \int \frac{e^{2x}}{1+e^x} \, dx =$$


- (A) $e^{2x} + \ln(1+e^x) + C$ (B) $e^{2x} - \ln(1+e^x) + C$ (C) $2e^{2x} - \ln(1+e^x) + C$ (D) $e^x - \ln(1+e^x) + C$
- 3. $\int 2\tan x \ln(\cos x) dx =$
 - (A) $\cos x [\ln(\cos x)] + C$ (B) $\sin x [\ln(\cos x)] + C$ (C) $-[\ln(\cos x)]^2 + C$ (D) $[\ln(\sin x)]^2 + C$

4.
$$\int_{2}^{3} \frac{1}{x^{2} - 4x + 5} dx =$$

(A) $\frac{\pi}{4}$ (B) $1 - \frac{\pi}{4}$ (C) $1 + \frac{\pi}{6}$ (D) $1 + \frac{\pi}{4}$

5.
$$\int \frac{2x}{x^2 + 2x + 1} dx =$$

(A) $- \operatorname{arc} \cot x - \frac{1}{x + 1} + C$
(B) $\arctan x + \frac{1}{x + 1} + C$
(C) $2\ln|x + 1| - \frac{2}{(x + 1)^2} + C$
(D) $2\ln|x + 1| + \frac{2}{x + 1} + C$

Free Response Questions

6. The region bounded by $y = \frac{\sin x}{\sqrt{\cos x}}$, x = 0, $x = \frac{\pi}{4}$, and the *x*-axis is revolved around the *x*-axis. What is the volume of the resulting solid?

Multiple Choice Questions

- 1. If the substitution $x = 2 \tan \theta$ is made in $\int \frac{x^3}{\sqrt{x^2 + 4}} dx$, where $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$, the resulting integral is
 - (A) 4 $\int \tan^2 \theta \sec \theta \, d\theta$
 - (B) 4 $\int \tan^2 \theta \sec^2 \theta \, d\theta$
 - (C) 8 $\tan^3 \theta \, d\theta$
 - (D) $8\int \tan^3\theta \sec\theta \,d\theta$

2.
$$\int_{\sqrt{2}}^{2} \frac{1}{x\sqrt{x^{2}-1}} dx =$$
(A) $\frac{\pi}{18}$ (B) $\frac{\pi}{12}$ (C) $\frac{\pi}{6}$ (D) $\frac{\pi}{4}$

3.
$$\int \frac{1}{x^2 \sqrt{25 - x^2}} dx =$$

(A) $-\frac{\sqrt{25 - x^2}}{5x^2} + C$
(B) $-\frac{\sqrt{25 - x^2}}{25} + C$
(C) $-\frac{\sqrt{25 - x^2}}{25x} + C$
(D) $\frac{\sqrt{25 - x^2}}{25x^2} + C$

- 4. If the substitution $x = \sec \theta$ is made in $\int \frac{\sqrt{x^2 1}}{x^4} dx$, where $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$, the resulting integral is
 - (A) $\int \sec^2 \theta \tan \theta \, d\theta + C$ (B) $\int \sec \theta \tan^2 \theta \, d\theta + C$ (C) $\int \sin \theta \cos^2 \theta \, d\theta + C$
 - (D) $\int \sin^2 \theta \cos \theta \, d\theta + C$

- 4. If the substitution $x = \sec \theta$ is made in $\int \frac{\sqrt{x^2 1}}{x^4} dx$, where $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$, the resulting integral is
 - (A) $\int \sec^2 \theta \tan \theta \, d\theta + C$
 - (B) $\int \sec\theta \tan^2\theta \, d\theta + C$
 - (C) $\int \sin\theta \cos^2\theta \, d\theta + C$
 - (D) $\int \sin^2 \theta \cos \theta \, d\theta + C$
- 5. The average value of $f(x) = \frac{4}{\sqrt{9+x^2}}$ on the interval [0,4] is
 - (A) $\ln 2$ (B) $\ln(\sqrt{2}-1)$ (C) $\ln 3$ (D) $\ln(\sqrt{2}+1)$

Free Response Questions

- 6. Let f be the function given by $f(x) = (9 x^2)^{3/2}$ on the closed interval [0,3].
 - (a) Find the average value of f on the closed interval [0,3].
 - (b) Substitute x = 3 sin θ for f. Set up, but do not integrate, an integral expression in terms of θ for the average value of f on the closed interval [0,3].

Multiple Choice Questions

1. $\int \frac{dx}{x^2 + x - 6} =$ (A) $\frac{1}{5} \ln \left| \frac{x - 1}{x + 6} \right| + C$ (B) $\frac{1}{5} \ln \left| \frac{x + 3}{x - 2} \right| + C$ (C) $\frac{1}{5} \ln \left| \frac{x - 2}{x + 3} \right| + C$ (D) $\frac{1}{5} \ln |(x - 2)(x + 3)| + C$

2.
$$\int_{4}^{7} \frac{5}{(x-2)(2x+1)} dx =$$

(A) $\ln \frac{9}{10}$ (B) $\ln \frac{10}{9}$ (C) $\ln \frac{3}{2}$ (D) $\ln \frac{9}{4}$

3.
$$\int \frac{x}{x^2 + 5x + 6} dx =$$

(A) $-2\ln|x + 2| + 3\ln|(x + 3)| + C$
(B) $2\ln|x + 2| + 3\ln|(x + 3)| + C$
(C) $2\ln|(x + 3)| - 3\ln|x + 2| + C$
(D) $-2\ln|(x + 3)| - 3\ln|x + 2| + C$

4.
$$\int \frac{2e^{2x}}{(e^x - 1)(e^x + 1)} dx =$$

(A) $\ln |e^x (e^{2x} - 1)| + C$
(B) $\ln |2e^x (e^{2x} - 1)| + C$
(C) $\ln \left|\frac{1}{e^{2x} - 1}\right| + C$
(D) $\ln |(e^x - 1)(e^x + 1)| + C$

Free Response Questions

- 5. Let f be the function given by $f(\theta) = \int \frac{\sin \theta}{\cos \theta (\cos \theta 1)} d\theta$.
 - (a) Substitute $x = \cos \theta$ and write an integral expression for f in terms of x.
 - (b) Use the method of partial fractions to find $f(\theta)$.

Integration by Parts

Integration by Parts Formula

If u and v are functions of x and have continuous derivatives, then $\int u \, dv = uv - \int v \, du$

Multiple Choice Questions

1.
$$\int x \sin(2x) \, dx =$$

(A)
$$-x\cos(2x) + \frac{1}{2}\sin(2x) + C$$

(B) $\frac{x}{2}\cos(2x) - \frac{1}{4}\sin(2x) + C$
(C) $-\frac{x}{2}\cos(2x) + \frac{1}{4}\sin(2x) + C$
(D) $\frac{x}{2}\cos(2x) + \frac{1}{4}\sin(2x) + C$

2.
$$\int_{0}^{2} xe^{x} dx =$$

(A) $e^{2} - 1$ (B) $e^{2} + 1$ (C) $e - 1$ (D) $e + 1$

3. If
$$\int x^2 \cos(3x) \, dx = f(x) - \frac{2}{3} \int x \sin(3x) \, dx$$
, then $f(x) = \frac{1}{3} \int x \sin(3x) \, dx$

(A)
$$\frac{2}{3}x\sin(3x)$$

(B) $\frac{1}{3}x^2\sin(3x)$
(C) $\frac{2}{3}x\cos(3x)$
(D) $\frac{1}{3}x\sin(3x) - \frac{2}{3}\cos(3x)$

$$4. \quad \int x^2 \ln x \, dx =$$

(A)
$$\frac{x^2 \ln x}{2} - \frac{x^2}{4} + C$$

(B) $x^3 \ln x - \frac{x^3}{3} + C$
(C) $\frac{x^3 \ln x}{3} - \frac{x^3}{9} + C$
(D) $\frac{x(\ln x)^2}{2} - \frac{x^3}{3} + C$

5.
$$\int_{0}^{\pi/4} x \sec^2 x \, dx =$$

(A) $\frac{\pi}{4} - \ln 2$ (B) $\frac{\pi}{4} + \ln 2$ (C) $\frac{\pi}{4} - \frac{\ln 2}{2}$ (D) $\frac{\pi}{4} + \frac{\ln 2}{2}$

$$\int \sec^3 x \, dx =$$

(A)
$$\frac{1}{4}\sec^4 x + C$$

(B) $\frac{1}{2}\sec^2 x \tan x + \frac{1}{2}\ln|\sec x| + C$
(C) $\frac{1}{2}\sec^2 x \tan x + \frac{1}{2}\ln|\tan x| + C$
(D) $\frac{1}{2}\sec x \tan x + \frac{1}{2}\ln|\sec x + \tan x| + C$

7. $\int f(x)\cos(nx) \, dx =$

(A)
$$\frac{1}{n} f(x) \sin(nx) - \frac{1}{n} \int f'(x) \sin(nx) dx$$

(B) $\frac{1}{n} f(x) \cos(nx) - \frac{1}{n} \int f'(x) \cos(nx) dx$
(C) $n f(x) \cos(nx) + \frac{1}{n} \int f'(x) \sin(nx) dx$
(D) $n f(x) \cos(nx) - \frac{1}{n} \int f'(x) \cos(nx) dx$

8. If $\int \arccos x \, dx = x \, \arccos x + \int f(x) \, dx$, then f(x) =

(A)
$$-x\sqrt{1-x^2}$$
 (B) $x\sqrt{1-x^2}$ (C) $-\frac{1}{\sqrt{1-x^2}}$ (D) $\frac{x}{\sqrt{1-x^2}}$

x	f(x)	g(x)	f'(x)	g'(x)
1	-2	3	4	-1
3	2	-1	-3	5

- 9. The table above gives values of f, f', g, and g' for selected values of x. If $\int_{1}^{3} f(x)g'(x) dx = 8$, then $\int_{1}^{3} f'(x)g(x) dx =$
 - (A) -4 (B) -1 (C) 5 (D) 8

Free Response Questions

10. Find the area of the region bounded by $y = \arcsin x$, y = 0, and x = 1. Show the work that leads to your answer.

1.
$$\int_{2}^{\infty} \frac{1}{\sqrt{x-1}} dx =$$

(A) $-\infty$ (B) -2 (C) 1 (D) ∞

2.
$$\int_{0}^{\infty} \frac{1}{(x+3)(x+4)} dx =$$

(A) $-\ln\frac{4}{3}$ (B) $-\ln\frac{3}{4}$ (C) 0 (D) $\ln 4$

3.
$$\int_{0}^{4} \frac{dx}{(x-1)^{2/3}} =$$

(A) $3\sqrt[3]{3}$ (B) $3(1-\sqrt[3]{3})$ (C) $3(1+\sqrt[3]{3})$ (D) divergent

$$4. \quad \int_0^\infty x^2 e^{-x^3} =$$

(A)
$$\frac{1}{3}$$
 (B) $\frac{1}{2}$ (C) 1 (D) divergent

5.
$$\int_{0}^{1} \frac{\ln x}{\sqrt{x}} dx =$$

(A) -6 (B) -4 (C) -2 (D) divergent

6. If $\int_0^1 \frac{ke^{-\sqrt{x}}}{\sqrt{x}} dx = 1$, what is the value of k?

(A) $-\frac{1}{2}$ (B) $\frac{e}{2}$ (C) $\frac{1}{2}$ (D) There is no such value of k

Free Response Questions

7. Let f be the function given by $f(x) = \frac{x}{\sqrt{x^2 + 1}} dx$.

(a) Show that the improper integral $\int_{1}^{\infty} f(x) dx$ is divergent.

(b) Find the average value of f on the interval $[1,\infty)$.