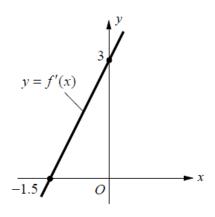
AP Calculus

Integration Review

Antiderivatives and Indefinite Integrals

- 1. If $\frac{dy}{dx} = 3x^2 1$, and if y = -1 when x = 1, then y =
 - (A) $x^3 x + 1$
 - (B) $x^3 x 1$
 - (C) $-x^3 + x 1$
 - (D) $-x^3 + 1$
- 2. Which of the following is the antiderivative of $f(x) = \tan x$?
 - (A) $\sec x + \tan x + C$
 - (B) $\csc x + \cot x + C$
 - (C) $\ln \left| \csc x \right| + C$
 - (D) $-\ln|\cos x| + C$
- 3. A curve has a slope of -x+2 at each point (x, y) on the curve. Which of the following is an equation for this curve if it passes through the point (2,1)?
 - (A) $\frac{1}{2}x^2 2x 4$
 - (B) $2x^2 + x 8$
 - (C) $-\frac{1}{2}x^2 + 2x 1$
 - (D) $x^2 2x + 1$
 - $4. \quad \int (x^2 2)\sqrt{x} \ dx =$
 - (A) $\frac{2}{5}x^2\sqrt{x} \frac{2}{3}x\sqrt{x} + C$
 - (B) $\frac{2}{5}x^2\sqrt{x} \frac{4}{3}x\sqrt{x} + C$
 - (C) $\frac{2}{7}x^3\sqrt{x} \frac{4}{3}x\sqrt{x} + C$
 - (D) $\frac{2}{7}x^3\sqrt{x} \frac{2}{3}x^2\sqrt{x} + C$



5. The graph of f', the derivative of f, is the line shown in the figure above. If f(3) = 11, then f(-3) = 11

Riemann Sum and Area Approximation

- 1. Using a left Riemann sum with three subintervals [0,1], [1,2], and [2,3], what is the approximation of $\int_0^3 (3-x)(x+1) dx$?
 - (A) 7.5
- (B) 9
- (C) 10
- (D) 11.5

x	.1	3	.5	.8	.10
f(x)	.7	.12	.16	23	.17

- 2. The function f is continuous on the closed interval [1,10] and has values as shown in the table above. Using a right Riemann sum with four subintervals [1,3], [3,5], [5,8], [8,10], what is the approximation of $\int_{1}^{10} f(x) dx$?
 - (A) 96
- (B) 116
- (C) 132
- (D) 159

3. The expression $\frac{1}{20} \left[\left(\frac{1}{20} \right)^2 + \left(\frac{2}{20} \right)^2 + \left(\frac{3}{20} \right)^2 + \dots + \left(\frac{20}{20} \right)^2 \right]$ is a Riemann sum approximation for

(A)
$$\frac{1}{20} \int_{0}^{20} x^2 dx$$

(B)
$$\frac{1}{20} \int_0^1 x^2 dx$$

(C)
$$\int_0^1 x^2 dx$$

(D)
$$\int_0^1 \frac{1}{x^2} dx$$

- 4. Using a midpoint Riemann sum with three subintervals [0,1], [1,2], and [2,3], what is the approximation of $\int_0^3 \sqrt{1+x^2} dx$?
 - (A) 5.613
- (B) 6.213
- (C) 6.812
- (D) 7.195
- 5. The expression $\frac{1}{30} \left[\sqrt{\frac{1}{30}} + \sqrt{\frac{2}{30}} + \sqrt{\frac{3}{30}} + \dots + \sqrt{\frac{30}{30}} \right]$ is a Riemann sum approximation for

(A)
$$\int_0^1 \sqrt{x} dx$$

(B)
$$\frac{1}{30} \int_{0}^{1} \sqrt{x} \ dx$$

(C)
$$\frac{1}{30} \int_{0}^{30} \sqrt{x} \, dx$$

(D)
$$\int_0^1 \frac{1}{\sqrt{x}} dx$$

6. The expression $\frac{1}{10} \left[\frac{1}{10} + \frac{2}{10} + \frac{3}{10} + \dots + \frac{20}{10} \right]$ is a Riemann sum approximation for

(A)
$$\int_{0}^{2} 2 dx$$

(B)
$$\int_0^2 x \, dx$$

(C)
$$\int_0^2 \frac{x}{10} dx$$

(D)
$$\frac{1}{10} \int_0^1 x \, dx$$

Definite Integrals and Area Under a Curve

$$1. \quad \int_0^3 \frac{dx}{\sqrt{1+x}} =$$

- (A) 2
- (B) 2.5
- (C) 3
- (D) 4
- 2. The area of the region in the first quadrant enclosed by the graph of $f(x) = 4x x^3$ and the x-axis is
 - (A) $\frac{11}{4}$ (B) $\frac{7}{2}$
- (C) 4
- (D) $\frac{11}{2}$

- 3. $\int_0^5 \sqrt{25-x^2} dx =$
- (A) $\frac{25\pi}{8}$ (B) $\frac{25\pi}{4}$ (C) $\frac{25\pi}{2}$
- (D) 25π

- 5. Which of the following limits is equal to $\int_1^3 x^3 dx$?
 - (A) $\lim_{n \to \infty} \sum_{i=1}^{n} (1 + \frac{i}{n})^3 \frac{1}{n}$
 - (B) $\lim_{n\to\infty} \sum_{i=1}^{n} (1+\frac{i}{n})^3 \frac{2}{n}$
 - (C) $\lim_{n\to\infty} \sum_{i=1}^{n} (1 + \frac{2i}{n})^3 \frac{1}{n}$
 - (D) $\lim_{n \to \infty} \sum_{i=1}^{n} (1 + \frac{2i}{n})^3 \frac{2}{n}$
 - 6. Which of the following integrals is equal to $\lim_{n\to\infty} \sum_{i=1}^{n} (-1 + \frac{3i}{n})^2 \frac{3}{n}$?
 - (A) $\int_{1}^{2} x^{2} dx$
 - (B) $\int_{-1}^{0} x^2 dx$
 - (C) $\int_{-1}^{2} (-1+x)^2 dx$
 - (D) $\int_{-1}^{0} (-1 + \frac{x}{3})^2 dx$

7. The closed interval [a,b] is partitioned into n equal subintervals, each of width Δx , by the numbers

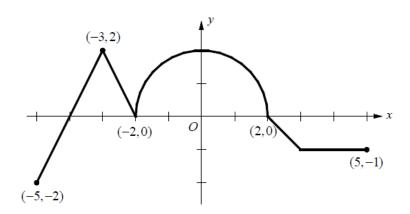
$$x_0, x_1, ..., x_n$$
 where $0 < a = x_0 < x_1 < \cdots < x_{n-1} < x_n = b$. What is $\lim_{n \to \infty} \sum_{i=1}^n \frac{1}{\sqrt{x_i}} \Delta x$?

- (A) $\frac{1}{\sqrt{b}} \frac{1}{\sqrt{a}}$
- (B) $\frac{(\sqrt{b}-\sqrt{a})}{2}$
- (C) $2(\sqrt{b}-\sqrt{a})$
- (D) $\sqrt{b} \sqrt{a}$
- 8. If *n* is a positive integer, then $\lim_{n\to\infty}\frac{1}{n}\left[\left(\frac{1}{n}\right)^2+\left(\frac{2}{n}\right)^2+\cdots+\left(\frac{n}{n}\right)^2\right]$ can be expressed as

- (A) $\int_0^1 \frac{1}{x} dx$ (B) $\int_0^1 \frac{1}{x^2} dx$ (C) $\int_0^1 x^2 dx$ (D) $\frac{1}{2} \int_0^1 x^2 dx$
- 9. If *n* is a positive integer, then $\lim_{n\to\infty} \frac{2}{n} \left[\sqrt{\frac{2}{n}} + \sqrt{\frac{4}{n}} + \dots + \sqrt{\frac{2n}{n}} \right]$ can be expressed as

- (A) $\int_{0}^{1} \sqrt{x} \, dx$ (B) $\int_{0}^{2} \sqrt{x} \, dx$ (C) $\int_{0}^{1} \frac{1}{\sqrt{x}} \, dx$ (D) $\int_{0}^{2} \frac{1}{\sqrt{x}} \, dx$

- 11. Let R be the region in the first quadrant bounded by the x-axis, the graph of $x = ky^2 + 1$ (k > 0), and the line x = 2.
 - (a) Write an integral expression for the area of the region R.
 - (b) If the area of the region R is 2, what is the value of k?
 - (c) Show that for all k > 0, the line tangent to the graph of $x = ky^2 + 1$ at the point $(2, \sqrt{\frac{1}{k}})$ passes through the origin.



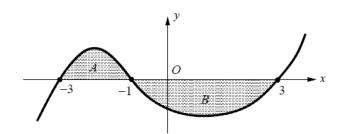
- 12. The graph of y = f(x) consists of four line segments and a semicircle as shown in the figure above. Evaluate each definite integral by using geometric formulas.

- (a) $\int_{-5}^{-2} f(x) dx$ (b) $\int_{-2}^{2} f(x) dx$ (c) $\int_{2}^{5} f(x) dx$ (d) $\int_{-5}^{5} |f(x)| dx$

Properties of Definite Integrals

- 1. If $\int_{a}^{b} f(x) dx = 2a 5b$, then $\int_{a}^{b} [f(x) 2] dx =$
 - (A) -7b
- (B) -3b
- (C) 4a 7b
- (D) 4a 3b
- 2. If $\int_{1}^{6} f(x) dx = \frac{15}{2}$ and $\int_{6}^{4} f(x) dx = 5$, then $\int_{1}^{4} f(x) dx = 6$

- (A) $\frac{5}{2}$ (B) $\frac{9}{2}$ (C) $\frac{19}{2}$
- 3. If $\int_{-2}^{6} f(x) dx = 10$ and $\int_{2}^{6} f(x) dx = 3$, then $\int_{2}^{6} f(4-x) dx = 10$
 - (A) 3
- (B) 6
- (C) 7
- (D) 10



- 4. The graph of y = f(x) is shown in the figure above. If A and B are positive numbers that represent the areas of the shaded regions, what is the value of $\int_{-3}^{3} f(x) dx - 2 \int_{-1}^{3} f(x) dx$, in terms of A and B?
 - (A) -A-B
- (B) A+B
- (C) A-2B

- 5. Let f and g be a continuous function on the interval [1,5]. Given $\int_{1}^{3} f(x) dx = -3$, $\int_{1}^{5} f(x) dx = 7$, and $\int_{1}^{5} g(x) dx = 9$, find the following definite integrals.
 - (a) $\int_{3}^{5} f(x) dx$
- (b) $\int_{1}^{3} [f(x)+3] dx$ (c) $\int_{5}^{1} 2g(x) dx$
- (d) $\int_{5}^{5} g(x) dx + \int_{5}^{3} f(x) dx$ (e) $\int_{-1}^{3} f(x+2) dx$
- 6. Let f and g be continuous functions with the following properties.
 - (1) g(x) = f(x) n where n is a constant.
 - (2) $\int_{0}^{4} f(x) dx \int_{0}^{6} g(x) dx = 1$
 - (3) $\int_{4}^{6} f(x) dx = 5n 1$
 - (a) Find $\int_0^4 f(x) dx$ in terms of n.
 - (b) Find $\int_0^6 g(x) dx$ in terms of n.
 - (c) Find the value of k if $\int_0^2 f(2x) dx = kn$.

Trapezoidal Rule

1. If four equal subdivisions on [0,2] are used, what is the trapezoidal approximation of $\int_0^2 e^x dx$?

(A)
$$\frac{1}{4} \left[1 + 2\sqrt{e} + 2e + 2e\sqrt{e} + e^2 \right]$$

(B)
$$\frac{1}{2} \left[1 + 2\sqrt{e} + 2e + 2e\sqrt{e} + e^2 \right]$$

(C)
$$\frac{1}{4} \left[1 + \sqrt{e} + e + e\sqrt{e} + e^2 \right]$$

(D)
$$\frac{1}{2} \left[1 + \sqrt{e} + e + e\sqrt{e} + e^2 \right]$$

2. If three equal subdivisions on $\left[\frac{\pi}{2}, \pi\right]$ are used, what is the trapezoidal approximation

of
$$\int_{-\pi/2}^{\pi} \sin x \, dx$$
?

(A)
$$\frac{\pi}{12} (\sin \frac{2\pi}{3} + \sin \frac{5\pi}{6} + \sin \pi)$$

(B)
$$\frac{\pi}{12} (\sin \frac{\pi}{2} + \sin \frac{2\pi}{3} + \sin \frac{5\pi}{6} + \sin \pi)$$

(C)
$$\frac{\pi}{12} (\sin \frac{\pi}{2} + 2 \sin \frac{2\pi}{3} + 2 \sin \frac{5\pi}{6} + \sin \pi)$$

(D)
$$\frac{\pi}{6} (\sin \frac{\pi}{2} + \sin \frac{2\pi}{3} + \sin \frac{5\pi}{6} + \sin \pi)$$

3. If three equal subdivisions on $\begin{bmatrix} 0,6 \end{bmatrix}$ are used, what is the trapezoidal approximation

of
$$\int_0^6 \ln(x+1) dx$$
?

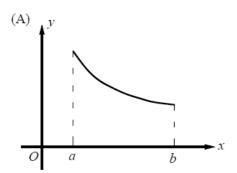
(A)
$$\frac{1}{3}(\ln 1 + \ln 9 + \ln 25 + \ln 7)$$

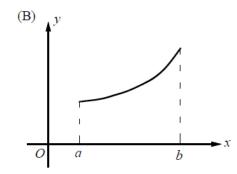
(B)
$$\frac{1}{2}(\ln 1 + \ln 9 + \ln 25 + \ln 7)$$

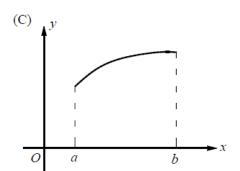
(C)
$$\ln 1 + \ln 3 + \ln 5 + \ln 7$$

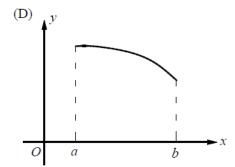
(D)
$$\ln 1 + \ln 9 + \ln 25 + \ln 7$$

4. If a trapezoidal sum underapproximates $\int_a^b f(x) dx$, and a right Riemann sum overapproximates $\int_a^b f(x) dx$, which of the following could be the graph of y = f(x)?







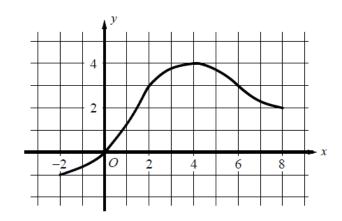


x	.1	3	.5	9	.12
f(x)	.4	.10	.14	.11	.7

- 5. A function f is continuous on the closed interval [1,12] and has values that are given in the table above. Using subintervals [1,3], [3,5], [5,9], and [9,12], what is the trapezoidal approximation of $\int_{1}^{12} f(x) dx$?
 - (A) 97
- (B) 115
- (C) 128
- (D) 136

Free Response Questions

6. Find a trapezoidal approximation of $\int_0^2 \cos(x^2) dx$ using four subdivisions of length $\Delta x = 0.5$.

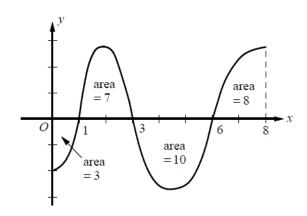


7. The graph of a differentiable function f on the closed interval [-2,8] is shown in the figure above. Find a trapezoidal approximation of $\int_{-2}^{8} f(x) dx$ using five subdivisions of length $\Delta x = 2$.

Fundamental Theorem of Calculus

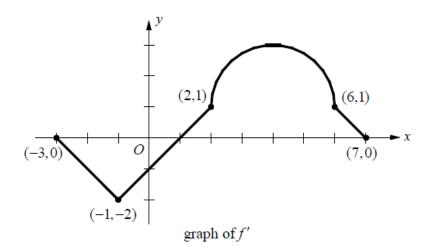
- 1. If f is the antiderivative of $\frac{\sqrt{x}}{1+x^3}$ such that f(1) = 2, then f(3) =
 - (A) 1.845
- (B) 2.397
- (C) 2.906
- (D) 3.234

- 2. If $f'(x) = \cos(x^2 1)$ and f(-1) = 1.5, then f(5) =
 - (A) 1.554
- (B) 2.841
- (C) 3.024
- (D) 3.456
- 3. If $f(x) = \sqrt{x^4 3x + 4}$ and g is the antiderivative of f, such that g(3) = 7, then g(0) = 3
 - (A) -2.966
- (B) -1.472
- (C) -0.745
- (D) 1.086
- 4. If f is a continuous function and F'(x) = f(x) for all real numbers x, then $\int_{2}^{10} f(\frac{1}{2}x) dx =$
 - (A) $\frac{1}{2} [F(5) F(1)]$
 - (B) $\frac{1}{2} [F(10) F(2)]$
 - (C) 2[F(5)-F(1)]
 - (D) 2[F(10)-F(2)]



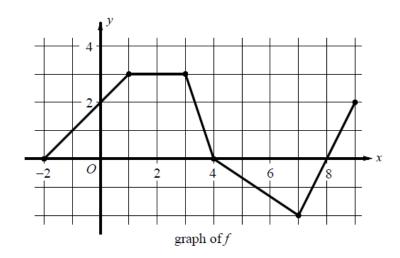
5. The figure above shows the graph of f', the derivative of a differentiable function f, on the closed interval $0 \le x \le 8$. The areas of the regions between the graph of f' and the x-axis are labeled in the figure. Given f(6) = 9, find each of the following.

- (a) f(0)
- (b) f(1)
- (c) f(3)
- (d) f(8)

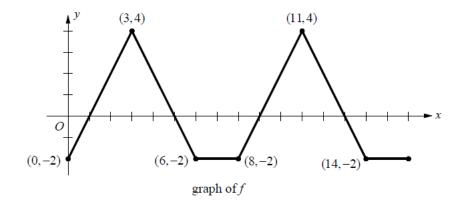


6. Let f be a function defined on the closed interval [-3,7] with f(2) = 3. The graph of f' consists of three line segments and a semicircle, as shown above.

- (a) Find f(-3) and f(7).
- (b) Find an equation for the line tangent to the graph of f at (2,3).
- (c) On what interval is f increasing? Justify your answer.
- (d) On what interval is f concave up? Justify your answer.



- 7. Let g be the function given by $g(x) = \int_{-2}^{x} f(t) dt$. The graph of the function f, shown above, consists of five line segments.
 - (a) Find g(0), g'(0) and g''(0).
 - (b) For what values of x, in the open interval (-2,9), is the graph of g concave up?
 - (c) For what values of x, in the open interval (-2,9), is g increasing?



- 8. The graph above shows two periods of f. The function f is defined for all real numbers x and is periodic with a period of 8. Let h be the function given by $h(x) = \int_0^x f(t) dt$.
 - (a) Find h(8), h'(6), and h''(4).
 - (b) Find the values of x at which h has its minimum and maximum on the closed interval [0,8]. Justify your answer.
 - (c) Write an equation for the line tangent to the graph of h at x = 35.

Second Fundamental Theorem of Calculus

1.
$$\frac{d}{dx} \int_{1}^{x^2} \sqrt{3+t^2} dt =$$

- (A) $\sqrt{3+x^2}$ (B) $\sqrt{3+x^4}$ (C) $2x\sqrt{3+x^4}$ (D) $2\sqrt{3+x^2}$

2. For
$$-\frac{\pi}{2} < x < \frac{\pi}{2}$$
, if $F(x) = \int_0^{\sin x} \frac{dt}{\sqrt{1-t^2}}$, then $F'(x) = \int_0^{\sin x} \frac{dt}{\sqrt{1-t^2}} dt$

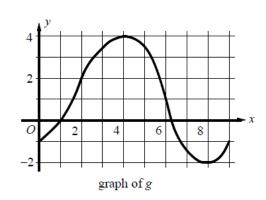
- (A) $\frac{\sin x}{\sqrt{1-x^2}}$ (B) $\frac{\cos x}{\sqrt{1-x^2}}$
- (C) 1
- (D) $\csc x$

3. If
$$F(x) = \int_0^{\sqrt{x}} \cos(t^2) dt$$
, then $F'(4) =$

- (A) $\cos 2$ (B) $\frac{\cos 4}{4}$ (C) $\frac{\cos 4}{\sqrt{2}}$ (D) $\sqrt{2} \cos 4$

4. Let
$$f$$
 be the function given by $f(x) = \int_0^x \cos(t^2 + 2) dt$ for $0 \le x \le \pi$. On which of the following intervals is f increasing?

- (A) $0 \le x \le \frac{\pi}{2}$
- (B) $0 \le x \le 1.647$
- (C) $1.647 \le x \le 2.419$
- (D) $\frac{\pi}{2} \le x \le \pi$



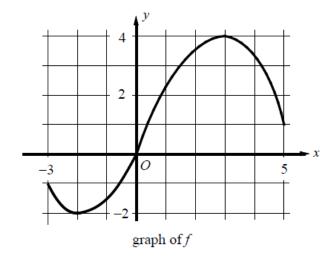
- 5. The graph of the function g, shown in the figure above, has horizontal tangents at x = 4 and x = 8. If $f(x) = \int_0^{\sqrt{x}} g(t) dt$, what is the value of f'(4)?
 - (A) 0

- (B) $\frac{1}{2}$ (C) $\frac{3}{4}$ (D) $\frac{3}{2}$

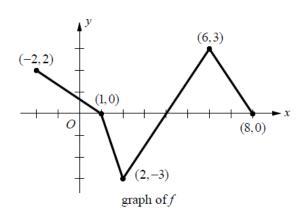
6. If
$$F(x) = \int_0^{x^2} \frac{\sqrt{t^2 + 3}}{2t} dt$$
, then $F''(1) =$

- (A) -1 (B) 0

- (C) 1 (D) $\frac{3}{2}$ (E) $\frac{8}{5}$



- 7. The graph of a function f, whose domain is the closed interval [-3,5], is shown above. Let g be the function given by $g(x) = \int_{-3}^{2x-1} f(t) dt$.
 - (a) Find the domain of g.
 - (b) Find g'(3).
 - (c) At what value of x is g(x) a maximum? Justify your answer.



- 8. The graph of f, consisting of four line segments, is shown in the figure above. Let g be the function given by $g(x) = \int_{-2}^{x} f(t) dt$.
 - (a) Find g'(1).
 - (b) Find the x-coordinate for each point of inflection of the graph of g on the interval -2 < x < 8.
 - (c) Find the average rate of change of g on the interval $2 \le x \le 8$.
 - (d) For how many values of c, where 2 < c < 8, is g'(c) equal to the average rate found in part (c)? Explain your reasoning.

Integration by Substitution

$$1. \int \sqrt{x} \sin(x^{3/2}) dx =$$

(A)
$$\frac{2}{3}\cos(x^{3/2}) + C$$

(B)
$$\frac{2}{3}\sqrt{x}\cos(x^{3/2}) + C$$

(C)
$$-\frac{2}{3}x^{3/2}\cos(x^{3/2}) + C$$

(D)
$$-\frac{2}{3}\cos(x^{3/2}) + C$$

2. If the substitution
$$u = 2 - x$$
 is made, $\int_{1}^{3} x \sqrt{2 - x} dx =$

(A)
$$\int_{-1}^{1} u \sqrt{u} \ du$$

(B)
$$-\int_{1}^{3} u \sqrt{u} \ du$$

(C)
$$\int_{1}^{3} (2-u)\sqrt{u} \ du$$

(D)
$$\int_{-1}^{1} (u-2)\sqrt{u} \ du$$

- 3. If $\int_{-1}^{3} f(x+k) dx = 8$, where k is a constant, then $\int_{k-1}^{k+3} f(x) dx =$
 - (A) 8 k
- (B) 8 + k
- (C) 8
- (D) k-8
- 4. If $\int_0^6 f(x) dx = 12$, what is the value of $\int_0^6 f(6-x) dx$?
 - (A) 12
- (B) 6
- (C) 0
- (D) -6
- 5. If the substitution $u = 1 + \sqrt{x}$ is made, $\int \frac{(1 + \sqrt{x})^{3/2}}{\sqrt{x}} dx =$
 - (A) $\frac{1}{2} \int u^{3/2} du$ (B) $2 \int u^{3/2} du$ (C) $\frac{1}{2} \int \sqrt{u} du$ (D) $2 \int \sqrt{u} du$

- 6. Using the substitution $u = \sec \theta$, $\int_0^{\pi/4} \frac{\tan \theta}{\sqrt{\sec \theta}} d\theta$ is equivalent to
 - (A) $\int_{1}^{\sqrt{2}} \frac{du}{\sqrt{u}}$
 - (B) $\int_{1}^{\sqrt{2}} \frac{du}{u\sqrt{u}}$
 - (C) $\int_{1}^{\sqrt{2}} \sqrt{u} \ du$
 - (D) $\int_{1}^{\sqrt{2}} u \sqrt{u} \ du$

- 7. If the substitution $u = \ln x$ is made, $\int_{e}^{e^2} \frac{1 (\ln x)^2}{x} dx =$
 - (A) $\int_{e}^{e^2} \left(\frac{1}{u} u^2\right) du$
 - (B) $\int_{e}^{e^{2}} \left(\frac{1}{u} u\right) du$
 - (C) $\int_{1}^{2} (1-u^2) du$
 - (D) $\int_{1}^{2} (1-u) du$

8. If f is continuous and $\int_{1}^{8} f(x) dx = 15$, find the value of $\int_{1}^{2} x^{2} f(x^{3}) dx$.

Integration of Exponential and Logarithmic Functions

- 1. $\int_{1}^{3} \frac{x+3}{x^2+6x} dx =$

- (A) $\ln \frac{3}{2}$ (B) $\frac{\ln 27 \ln 7}{2}$ (C) $\ln 3$ (D) $\frac{\ln 20 \ln 5}{2}$
- 2. $\int_0^1 \frac{x}{e^{x^2}} dx =$

- (A) e-1 (B) $(1-\frac{1}{e})$ (C) $\frac{1}{2}(1-\frac{1}{e})$ (D) $\frac{1}{2}(1-\frac{1}{e^2})$
- 3. $\int_{0}^{\pi/2} \cos x \ e^{\sin x} \ dx =$
- (A) -e (B) 1-e (C) $\frac{e}{2}$
- (D) e-1

- 4. What is the area of the region in the first quadrant bounded by the curve $y = \frac{\cos x}{2 + \sin x}$ and the vertical line $x = \frac{\pi}{2}$?

 - (A) $\ln \frac{1}{2}$ (B) $\ln \frac{3}{2}$
- (C) ln 3
- (D) $\frac{\ln 3}{\ln 2}$
- 5. Let F(x) be an antiderivetive of $\ln(\sin^2 x) + 3$. If F(1) = 2, then F(3) =
 - (A) 6.595
- (B) 7.635
- (C) 10.036
- (D) 12.446

- 6. $\int_0^2 \frac{x^2}{x+1} dx =$
 - (A) ln 3
- (B) $\ln 3 + 2$
- (C) ln 6
- (D) $\ln 6 + 4$

- 7. $\int_{1}^{e} \frac{\cos(\ln x)}{x} dx =$
 - (A) $\frac{1}{\sin 1}$ (B) $\frac{1}{\cos 1}$
- (C) $\sin(e)$
- (D) sin 1

- 8. The sales of a new product, after it has been on the market for t years, is given by $S(t) = Ce^{k/t}$.
 - (a) Find C and k if 7000 units have been sold after one year and $\lim_{t\to\infty} S(t) = 45,000$.
 - (b) Find the total number of units sold during the year t = 5 and t = 10.