Differentiation

Definition of Derivatives and the Power Rule

1.
$$\lim_{h \to 0} \frac{\sqrt[3]{8+h} - 2}{h} =$$

- (A) $\frac{1}{12}$ (B) $\frac{1}{4}$ (C) $\frac{\sqrt[3]{2}}{2}$ (D) $\sqrt[3]{2}$
- (E) 2

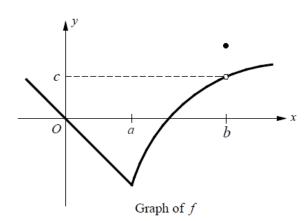
2.
$$\lim_{h\to 0} \frac{(2+h)^5 - 32}{h}$$
 is

- (A) f'(5), where $f(x) = x^2$
- (B) f'(2), where $f(x) = x^5$
- (C) f'(5), where $f(x) = 2^x$
- (D) f'(2), where $f(x) = 2^x$

$$f(x) = \begin{cases} 1 - 2x, & \text{if } x \le 1 \\ -x^2, & \text{if } x > 1 \end{cases}$$

- 3. Let f be the function given above. Which of the following must be true?
 - I. $\lim_{x \to 1} f(x)$ exists.
 - II. f is continuous at x = 1.
 - III. f is differentiable at x = 1.
 - (A) I only
 - (B) I and II only
 - (C) II and III only
 - (D) I, II, and III

- 4. What is the instantaneous rate of change at x = -1 of the function $f(x) = -\sqrt[3]{x^2}$?
 - (A) $-\frac{2}{3}$ (B) $-\frac{1}{3}$ (C) $\frac{1}{3}$



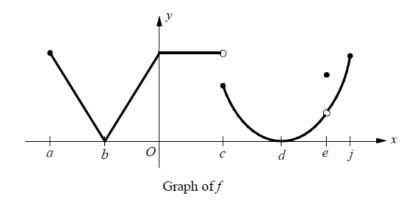
- 5. The graph of a function f is shown in the figure above. Which of the following statements must be false?
 - (A) f(x) is defined for $0 \le x \le b$.
 - (B) f(b) exists.
 - (C) f'(b) exists.
 - (D) $\lim_{x \to a^{-}} f'(x)$ exists.
- 6. If f is a differentiable function, then f'(1) is given by which of the following?

I.
$$\lim_{h\to 0} \frac{f(1+h) - f(1)}{h}$$

II.
$$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1}$$

III.
$$\lim_{x \to 0} \frac{f(x+h) - f(x)}{h}$$

- (A) I only
- (B) II only
- (C) I and II only (D) I and III only



- 7. The graph of a function f is shown in the figure above. At how many points in the interval a < x < j is f' not defined?
 - (A) 3

- (B) 4
- (C) 5
- (D) 6

8. Let f be the function defined by $f(x) = \begin{cases} mx^2 - 2 & \text{if } x \le 1 \\ k\sqrt{x} & \text{if } x > 1 \end{cases}$. If f is differentiable at x = 1, what are the values of k and m?

9. Let f be a function that is differentiable throughout its domain and that has the following properties.

(1)
$$f(x+y) = f(x) + x^3y - xy^3 - f(y)$$

(2)
$$\lim_{x \to 0} \frac{f(x)}{x} = 1$$

Use the definition of the derivative to show that $f'(x) = x^3 - 1$.

10. Let f be the function defined by

$$f(x) = \begin{cases} x+2 & \text{for } x \le 0\\ \frac{1}{2}(x+2)^2 & \text{for } x > 0. \end{cases}$$

- (a) Find the left-hand derivative of f at x = 0.
- (b) Find the right-hand derivative of f at x = 0.
- (c) Is the function f differentiable at x = 0? Explain why or why not.
- (d) Suppose the function g is defined by

$$g(x) = \begin{cases} x+2 & \text{for } x \le 0\\ a(x+b)^2 & \text{for } x > 0, \end{cases}$$

where a and b are constants. If g is differentiable at x = 0, what are the values of a and b?

Products, Quotients, and Higher Derivatives

- 1. If $f(x) = (x^3 2x + 5)(x^{-2} + x^{-1})$, then f'(1) =
 - (A) -10 (B) -6
- (C) $-\frac{9}{2}$ (D) $\frac{7}{2}$

- 2. If $f(x) = \frac{\sqrt{x-1}}{\sqrt{x+1}}$ then $f'(x) = \frac{1}{x^2+1}$
 - (A) $\frac{\sqrt{x}}{(\sqrt{x}+1)^2}$
 - (B) $\frac{x}{(\sqrt{x}+1)^2}$
 - (C) $\frac{1}{\sqrt{x}(\sqrt{x}+1)^2}$
 - (D) $\frac{\sqrt{x}-1}{\sqrt{x}(\sqrt{x}+1)^2}$
 - 3. If g(2) = 3 and g'(2) = -1, what is the value of $\frac{d}{dx} \left(\frac{g(x)}{x^2} \right)$ at x = 2?
 - (A) -3
- (B) -1
- (C) 0
- (D) 2
- 4. If $f(x) = \frac{x}{x \frac{a}{x}}$ and $f'(1) = \frac{1}{2}$, what is the value of a?
 - (A) $-\frac{5}{2}$ (B) -1 (C) $\frac{1}{2}$
- (D) 2

- 5. If $y = 4\sqrt{x} 16 \sqrt[4]{x}$, then y'' =
- (A) $\sqrt[4]{x} 3$ (B) $-3\sqrt{x} + 3$ (C) $\frac{-\sqrt[4]{x} + 3}{4\sqrt{3}}$ (D) $\frac{\sqrt{x} 3}{x\sqrt[4]{x}}$

6. If $y = x^2 \cdot f(x)$, then y'' =

(A)
$$x^2 f''(x) + x f'(x) + 2f(x)$$

(B)
$$x^2 f''(x) + x f'(x) + f(x)$$

(C)
$$x^2 f''(x) + 2x f'(x) + f(x)$$

(D)
$$x^2 f''(x) + 4x f'(x) + 2f(x)$$

- 7. Let $f(x) = \frac{1}{2}x^6 10x^3 + 12x$. What is the value of f(x), when f'''(x) = 0?
 - (A) $-\frac{23}{4}$ (B) $-\frac{3}{2}$ (C) $\frac{1}{2}$
- (D) $\frac{5}{2}$

- 8. Let $h(x) = x \cdot f(x) \cdot g(x)$. Find h'(1), if f(1) = -2, g(1) = 3, f'(1) = 1, and $g'(1) = \frac{1}{2}$.
- 9. Let $g(x) = \frac{x}{\sqrt{x-1}}$. Find g''(4).

Chain Rule and Composite Functions

1. If
$$f(x) = \sqrt{x + \sqrt{x}}$$
, then $f'(x) =$

- (A) $\frac{1}{2\sqrt{x+\sqrt{x}}}$ (B) $\frac{\sqrt{x+1}}{2\sqrt{x+\sqrt{x}}}$ (C) $\frac{2\sqrt{x}}{4\sqrt{x+\sqrt{x}}}$ (D) $\frac{2\sqrt{x+1}}{4\sqrt{x^2+x\sqrt{x}}}$

2. If
$$f(x) = (x^2 - 3x)^{3/2}$$
, then $f'(4) =$

- (A) $\frac{15}{2}$ (B) 9
- (C) $\frac{21}{2}$
- (D) 15

3. If f, g, and h are functions that is everywhere differentiable, then the derivative of $\frac{f}{g,h}$ is

(A)
$$\frac{g \ h f' - f \ g' \ h'}{g \ h}$$

(B)
$$\frac{g h f' - f g h' - f h g'}{g h}$$

(C)
$$\frac{g h f' - f g h' - f g'h}{g^2 h^2}$$

(D)
$$\frac{g h f' - f g h' + f h g'}{g^2 h^2}$$

4. If
$$f(x) = (3 - \sqrt{x})^{-1}$$
, then $f''(4) =$

- (A) $\frac{3}{32}$ (B) $\frac{3}{16}$
- (C) $\frac{3}{4}$
- (D) $\frac{9}{4}$

Questions 5-9 refer to the following table.

х	f(x)	g(x)	f'(x)	g'(x)
1	3	2	1	-1
2	-2	1	-1	3
3	1	4	2	3
4	5	2	1	-2

The table above gives values of f , f^{\prime} , g , and g^{\prime} at selected values of x .

- 5. Find h'(1), if h(x) = f(g(x)).
- 6. Find h'(2), if $h(x) = x f(x^2)$.
- 7. Find h'(3), if $h(x) = \frac{f(x)}{\sqrt{g(x)}}$.
- 8. Find h'(2), if $h(x) = [f(2x)]^2$.
- 9. Find h'(1), if $h(x) = (x^9 + f(x))^{-2}$.

10. Let f and g be differentiable functions such that f(g(x)) = 2x and $f'(x) = 1 + [f(x)]^2$.

- (a) Show that $g'(x) = \frac{2}{f'(g(x))}$.
- (b) Show that $g'(x) = \frac{2}{1 + 4x^2}$.

Derivatives of Trigonometric Functions

1.
$$\lim_{h \to 0} \frac{\cos(\frac{\pi}{3} + h) - \frac{1}{2}}{h} =$$

- (A) $-\frac{1}{2}$ (B) $-\frac{\sqrt{3}}{2}$
- (C) $\frac{1}{2}$ (D) $\frac{\sqrt{3}}{2}$

$$2. \quad \lim_{h \to 0} \frac{\sin 2(x+h) - \sin 2x}{h} =$$

- (A) $2\sin 2x$ (B) $-2\sin 2x$
- (C) $2\cos 2x$
- (D) $-2\cos 2x$

3. If
$$f(x) = \sin(\cos 2x)$$
, then $f'(\frac{\pi}{4}) =$

- (A) 0
- (B) -1
- (C) 1
- (D) -2

4. If
$$y = a \sin x + b \cos x$$
, then $y + y'' =$

(A) 0

- (B) $2a \sin x$
- (C) $2b\cos x$
- (D) $-2a\sin x$

5.
$$\frac{d}{dx} \sec^2(\sqrt{x}) =$$

(A)
$$\frac{2\sec(\sqrt{x})\tan(\sqrt{x})}{\sqrt{x}}$$

(B)
$$\frac{2\sec^2(\sqrt{x})\tan(\sqrt{x})}{\sqrt{x}}$$

(C)
$$\frac{\sec^2(\sqrt{x})\tan(\sqrt{x})}{\sqrt{x}}$$

(D)
$$\frac{\sec(\sqrt{x})\tan(\sqrt{x})}{\sqrt{x}}$$

$$6. \quad \frac{d}{dx} \Big[x^2 \cos 2x \Big] =$$

(A)
$$-2x\sin 2x$$

(B)
$$2x(-x\sin 2x + \cos 2x)$$

(C)
$$2x(x\sin 2x - \cos 2x)$$

(D)
$$2x(x\sin 2x - \cos 2x)$$

7. If
$$f(\theta) = \cos \pi - \frac{1}{2\cos \theta} + \frac{1}{3\tan \theta}$$
, then $f'(\frac{\pi}{6}) =$

(A)
$$\frac{1}{2}$$

(C)
$$\frac{4}{\sqrt{3}}$$

(D)
$$2\sqrt{3}$$

х	f(x)	g(x)	f'(x)	g'(x)
1	-1/2	3/2	4	$\sqrt{2}$
$\pi/4$	-2	1	2	3

8. The table above gives values of f, f', g, and g' at selected values of x.

Find
$$h'(\frac{\pi}{4})$$
, if $h(x) = f(x) \cdot g(\tan x)$.

9. Find the value of the constants a and b for which the function

$$f(x) = \begin{cases} \sin x, & x < \pi \\ ax + b, & x \ge \pi \end{cases}$$
 is differentiable at $x = \pi$.

Derivatives of Exponential and Logarithmic Functions

1.
$$\lim_{h \to 0} \frac{\frac{1}{2} \left[\ln(e+h) - 1 \right]}{h}$$
 is

- (A) f'(1), where $f(x) = \ln \sqrt{x}$
- (B) f'(1), where $f(x) = \ln \sqrt{x + e}$
- (C) f'(e), where $f(x) = \ln \sqrt{x}$
- (D) f'(e), where $f(x) = \ln(\frac{x}{2})$
- 2. If $f(x) = e^{\tan x}$, then $f'(\frac{\pi}{4}) =$
 - (A) $\frac{e}{2}$
- (B) e
- (C) 2e
- (D) $\frac{e^2}{2}$

- 3. If $y = \ln(\cos x)$, then y' =
 - (A) $-\tan x$
- (B) $\tan x$
- (C) $-\cot x$
- (D) $\csc x$

- 4. If $y = x^x$, then y' =
 - (A) $x^x \ln x$

- (B) $x^{x}(1+\ln x)$ (C) $x^{x}(x+\ln x)$ (D) $\frac{x^{x}\ln x}{x}$

- 5. If $y = e^{\sqrt{x^2 + 1}}$, then y' =
 - (A) $\sqrt{x^2+1} e^{\sqrt{x^2+1}}$
 - (B) $2x\sqrt{x^2+1} e^{\sqrt{x^2+1}}$
 - (C) $\frac{e^{\sqrt{x^2+1}}}{\sqrt{x^2+1}}$
 - (D) $\frac{xe^{\sqrt{x^2+1}}}{\sqrt{x^2+1}}$
- 6. If $y = (\sin x)^{1/x}$, then y' =
 - (A) $(\sin x)^{\frac{1}{x}} \left[\frac{\ln(\sin x)}{x} \right]$
 - (B) $(\sin x)^{\frac{1}{x}} \left[\frac{x \ln(\sin x)}{x^2} \right]$
 - (C) $(\sin x)^{\frac{1}{x}} \left[\frac{x \sin x \ln(\sin x)}{x^2} \right]$
 - (D) $(\sin x)^{\frac{1}{x}} \left[\frac{x \cot x \ln(\sin x)}{x^2} \right]$
- 7. If $f(x) = \ln[\sec(\ln x)]$, then f'(e) =
 - (A) $\frac{\cos 1}{e}$
- (B) $\frac{\sin 1}{e}$
- (C) $\frac{\tan 1}{e}$
- (D) $\frac{\cot e}{e}$

8. If
$$y = x^{\ln \sqrt{x}}$$
, then $y' =$

(A)
$$\frac{x^{\ln\sqrt{x}}\ln x}{2x}$$

(B)
$$\frac{x^{\ln \sqrt{x}} \ln x}{x}$$

(C)
$$\frac{2x^{\ln\sqrt{x}}\ln x}{x}$$

(D)
$$\frac{x^{\ln\sqrt{x}}(1+\ln x)}{x}$$

- 9. Let $f(x) = xe^x$ and $f^{(n)}(x)$ be the *n*th derivative of f with respect to x. If $f^{(10)}(x) = (x+n)e^x$, what is the value of n?
- 10. Let f and h be twice differentiable functions such that $h(x) = e^{f(x)}$. If $h''(x) = e^{f(x)} \left[1 + x^2 \right]$, then $f'(x) = e^{f(x)} \left[1 + x^2 \right]$

Tangent Lines and Normal Lines

1. The equation of the line tangent to the graph of $y = x\sqrt{3+x^2}$ at the point (1,2) is

(A)
$$y = \frac{3}{2}x - \frac{1}{2}$$

(B)
$$y = 2x + \frac{1}{2}$$

(C)
$$y = \frac{5}{2}x - \frac{1}{2}$$

(A)
$$y = \frac{3}{2}x - \frac{1}{2}$$
 (B) $y = 2x + \frac{1}{2}$ (C) $y = \frac{5}{2}x - \frac{1}{2}$ (D) $y = \frac{5}{2}x + \frac{1}{2}$

2. Which of the following is an equation of the line tangent to the graph of $f(x) = x^2 - x$ at the point where f'(x) = 3?

(A)
$$y = 3x - 2$$

(B)
$$y = 3x + 2$$

(C)
$$y = 3x - 4$$

(D)
$$y = 3x + 4$$

3. A curve has slope $2x + x^{-2}$ at each point (x, y) on the curve. Which of the following is an equation for this curve if it passes through the point (1,3)?

(A)
$$y = 2x^2 + \frac{1}{x}$$

(B)
$$y = x^2 - \frac{1}{x} + 3$$

(C)
$$y = x^2 + \frac{1}{x} + 1$$

(D)
$$y = x^2 - \frac{2}{x^2} + 4$$

4. An equation of the line normal to the graph of $y = \tan x$, at the point $(\frac{\pi}{6}, \frac{1}{\sqrt{3}})$ is

(A)
$$y - \frac{1}{\sqrt{3}} = -\frac{1}{4}(x - \frac{\pi}{6})$$

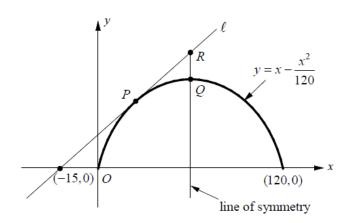
(B)
$$y - \frac{1}{\sqrt{3}} = \frac{1}{4}(x - \frac{\pi}{6})$$

(C)
$$y - \frac{1}{\sqrt{3}} = -\frac{3}{4}(x - \frac{\pi}{6})$$

(D)
$$y - \frac{1}{\sqrt{3}} = \frac{3}{4}(x - \frac{\pi}{6})$$

- 5. If 2x + 3y = 4 is an equation of the line normal to the graph of f at the point (-1,2), then f'(-1) =
 - (A) $-\frac{2}{3}$ (B) $\frac{1}{\sqrt{2}}$ (C) $\sqrt{2}$

- 6. If 2x y = k is an equation of the line normal to the graph of $f(x) = x^4 x$, then k =
 - (A) $\frac{23}{16}$ (B) $\frac{13}{18}$ (C) $\frac{15}{16}$ (D) $\frac{9}{8}$



- 7. Line ℓ is tangent to the graph of $y = x \frac{x^2}{120}$ at the point P and intersects x-axis at (-15,0) as shown in the figure above.
 - (a) Find the x-coordinates of point P.
 - (b) Write an equation for line ℓ .
 - (c) If the line of symmetry for the curve $y = x \frac{x^2}{120}$ intersects line ℓ at point R, what is the length of \overline{QR} ?

Implicit Differentiation

- 1. If $3xy + x^2 2y^2 = 2$, then the value of $\frac{dy}{dx}$ at the point (1,1) is

- (A) 5 (B) $\frac{7}{2}$ (C) $-\frac{1}{2}$ (D) $-\frac{7}{2}$
- 2. If $3x^4 x^2 y^2 = 0$, then the value of $\frac{dy}{dx}$ at the point $(1, \sqrt{2})$ is

 - (A) $\frac{\sqrt{2}}{2}$ (B) $\frac{3\sqrt{2}}{2}$ (C) $\frac{5\sqrt{2}}{2}$

- 3. If $x^2y + 2xy^2 = 5x$, then $\frac{dy}{dx} =$
 - (A) $\frac{5-4xy-4y}{x^2+4xy}$
 - (B) $\frac{5-2xy-2y^2}{x^2+4xy}$
 - (C) $\frac{5-2xy-y^2}{x^2+2xy}$
 - (D) $\frac{5-xy-2y}{x^2-2xy}$
- 4. If $xy + \tan(xy) = \pi$, then $\frac{dy}{dx} =$
- (A) $-y \sec^2(xy)$ (B) $-y \cos^2(xy)$ (C) $-x \sec^2(xy)$ (D) $-\frac{y}{x}$
- 5. An equation of the line tangent to the graph of $3y^2 x^3 xy^2 = 7$ at the point (1,2) is
- (A) $y = \frac{3}{4}x \frac{3}{8}$ (B) $y = \frac{3}{4}x + \frac{1}{2}$ (C) $y = -\frac{7}{8}x + \frac{3}{2}$ (D) $y = \frac{7}{8}x + \frac{9}{8}$

6. An equation of the line normal to the graph of $2x^2 + 3y^2 = 5$ at the point (1,1) is

(A)
$$y = \frac{3}{2}x + 1$$

(B)
$$y = \frac{3}{2}x - \frac{1}{2}$$

(C)
$$y = -\frac{2}{3}x + \frac{5}{3}$$

(A)
$$y = \frac{3}{2}x + 1$$
 (B) $y = \frac{3}{2}x - \frac{1}{2}$ (C) $y = -\frac{2}{3}x + \frac{5}{3}$ (D) $y = -\frac{2}{3}x + \frac{3}{2}$

7. If $x + \sin y = y + 3$, then $\frac{d^2y}{dx^2} =$

$$(A) \frac{-\sin y}{(1-\cos y)^2}$$

(A)
$$\frac{-\sin y}{(1-\cos y)^2}$$
 (B) $\frac{-\sin y}{(1+\cos y)^2}$ (C) $\frac{-\sin y}{(1-\cos y)^3}$ (D) $\frac{-\sin y}{(1+\cos y)^3}$

(C)
$$\frac{-\sin y}{(1-\cos y)^3}$$

(D)
$$\frac{-\sin y}{(1+\cos y)^3}$$

- 8. Consider the curve given by $x^3 xy + y^2 = 3$.
 - (a) Find $\frac{dy}{dx}$.
 - (b) Find all points on the curve whose x-coordinate is 1, and write an equation for the tangent line at each of these points.
 - (c) Find the x-coordinate of each point on the curve where the tangent line is horizontal.
- 9. Consider the curve $x^2 + y^2 xy = 7$.
 - (a) Find $\frac{dy}{dx}$.
 - (b) Find all points on the curve whose x-coordinate is 2, and write an equation for the tangent line at each of these points.
 - (c) Find the x-coordinate of each point on the curve where the tangent line is vertical.

Derivatives of an Inverse Function

- 1. Let f and g be functions that are differentiable everywhere. If g is the inverse function of f and if g(3) = 4 and $f'(4) = \frac{3}{2}$, then g'(3) =
 - (A) $\frac{1}{4}$ (B) $\frac{1}{3}$ (C) $\frac{2}{3}$
- (D) $\frac{4}{3}$

- 2. If f(-3) = 2 and $f'(-3) = \frac{3}{4}$, then $(f^{-1})'(2) =$
 - (A) $\frac{1}{2}$ (B) $\frac{4}{3}$ (C) $\frac{3}{2}$

- (D) $-\frac{3}{4}$

- 3. If $f(x) = x^3 x + 2$, then $(f^{-1})'(2) =$
 - (A) $\frac{1}{2}$ (B) $\frac{2}{3}$
- (C) 4
- (D) 6

- 4. If $f(x) = \sin x$, then $(f^{-1})'(\frac{\sqrt{3}}{2}) =$

 - (A) $\frac{1}{2}$ (B) $\frac{2\sqrt{3}}{3}$
- (C) $\sqrt{3}$
- (D) 2

- 5. If $f(x) = 1 + \ln x$, then $(f^{-1})'(2) =$
 - (A) $-\frac{1}{e}$ (B) $\frac{1}{e}$
- (C) −*e*
- (D) e

х	f(x)	f'(x)	g(x)	g'(x)
-1	3	-2	2	6
0	-2	-1	0	-3
1	0	1	-1	2
2	-1	4	3	-1

- 6. The functions f and g are differentiable for all real numbers. The table above gives the values of the functions and their first derivatives at selected values of x.
 - (a) If f^{-1} is the inverse function of f, write an equation for the line tangent to the graph of $y = f^{-1}(x)$ at x = -1.
 - (b) Let h be the function given by h(x) = f(g(x)). Find h(1) and h'(1).
 - (c) Find $(h^{-1})'(3)$, if h^{-1} is the inverse function of h.

Derivatives of Inverse Trigonometric Functions

1.
$$\frac{d}{dx}(\arcsin x^2) =$$

(A) $-\frac{2x}{\sqrt{1-x^2}}$ (B) $\frac{2x}{\sqrt{x^2-1}}$ (C) $\frac{2x}{\sqrt{x^4-1}}$ (D) $\frac{2x}{\sqrt{1-x^4}}$

2. If $f(x) = \arctan(e^{-x})$, then f'(-1) =

(A) $\frac{-e}{1+e}$ (B) $\frac{e}{1+e}$ (C) $\frac{-e}{1+e^2}$ (D) $\frac{-1}{1+e^2}$

3. If $f(x) = \arctan(\sin x)$, then $f'(\frac{\pi}{3}) =$

(A) $\frac{2}{7}$ (B) $\frac{1}{2}$ (C) $\frac{\sqrt{2}}{3}$

4. If $y = \cos(\sin^{-1} x)$, then y' =

(A) $-\frac{1}{\sqrt{1-x^2}}$ (B) $-\frac{x}{\sqrt{1-x^2}}$ (C) $\frac{2x}{\sqrt{1-x^2}}$ (D) $-\frac{2x}{\sqrt{x^2-1}}$

Free Response Questions

5. Let f be the function given by $f(x) = x^{\tan^{-1} x}$.

- (a) Find f'(x).
- (b) Write an equation for the line tangent to the graph of f at x = 1.

Approximating a Derivative

1. Some values of differentiable function f are shown in the table below. What is the approximation value of f'(3.5)?

x	3.0	3.3	3.8	4.2	4.9
f(x)	21.8	26.1	32.5	38.2	48.7

(A) 8

(B) 10

(C) 13

(D) 16

Month	1	2	3	4	5	6
Temperature	-8	0	25	50	72	88

- 2. The normal daily maximum temperature F for a certain city is shown in the table above.
 - (a) Use data in the table to find the average rate of change in temperature from t = 1 to t = 6.
 - (b) Use data in the table to estimate the rate of change in maximum temperature at t = 4.
 - (c) The rate at which the maximum temperature changes for $1 \le t \le 6$ is modeled by $F(t) = 40 52\sin(\frac{\pi t}{6} 5)$ degrees per minute. Find F'(4) using the given model.