Definition of Derivatives and the Power Rule

1. $\lim _{h \rightarrow 0} \frac{\sqrt[3]{8+h}-2}{h}=$
(A) $\frac{1}{12}$
(B) $\frac{1}{4}$
(C) $\frac{\sqrt[3]{2}}{2}$
(D) $\sqrt[3]{2}$
(E) 2
2. $\lim _{h \rightarrow 0} \frac{(2+h)^{5}-32}{h}$ is
(A) $f^{\prime}(5)$, where $f(x)=x^{2}$
(B) $f^{\prime}(2)$, where $f(x)=x^{5}$
(C) $f^{\prime}(5)$, where $f(x)=2^{x}$
(D) $f^{\prime}(2)$, where $f(x)=2^{x}$

$$
f(x)= \begin{cases}1-2 x, & \text { if } x \leq 1 \\ -x^{2}, & \text { if } x>1\end{cases}
$$

3. Let f be the function given above. Which of the following must be true?
I. $\lim _{x \rightarrow 1} f(x)$ exists.
II. f is continuous at $x=1$.
III. f is differentiable at $x=1$.
(A) I only
(B) I and II only
(C) II and III only
(D) I, II, and III
4. What is the instantaneous rate of change at $x=-1$ of the function $f(x)=-\sqrt[3]{x^{2}}$?
(A) $-\frac{2}{3}$
(B) $-\frac{1}{3}$
(C) $\frac{1}{3}$
(D) $\frac{2}{3}$

5. The graph of a function f is shown in the figure above. Which of the following statements must be false?
(A) $f(x)$ is defined for $0 \leq x \leq b$.
(B) $f(b)$ exists.
(C) $f^{\prime}(b)$ exists.
(D) $\lim _{x \rightarrow a^{-}} f^{\prime}(x)$ exists.
6. If f is a differentiable function, then $f^{\prime}(1)$ is given by which of the following?
I. $\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}$
II. $\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1}$
III. $\lim _{x \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
(A) I only
(B) II only
(C) I and II only
(D) I and III only

7. The graph of a function f is shown in the figure above. At how many points in the interval $a<x<j$ is f^{\prime} not defined?
(A) 3
(B) 4
(C) 5
(D) 6

Free Response Questions

8. Let f be the function defined by $f(x)=\left\{\begin{array}{ll}m x^{2}-2 & \text { if } x \leq 1 \\ k \sqrt{x} & \text { if } x>1\end{array}\right.$. If f is differentiable at $x=1$, what are the values of k and m ?
9. Let f be a function that is differentiable throughout its domain and that has the following properties.
(1) $f(x+y)=f(x)+x^{3} y-x y^{3}-f(y)$
(2) $\lim _{x \rightarrow 0} \frac{f(x)}{x}=1$

Use the definition of the derivative to show that $f^{\prime}(x)=x^{3}-1$.
10. Let f be the function defined by

$$
f(x)= \begin{cases}x+2 & \text { for } x \leq 0 \\ \frac{1}{2}(x+2)^{2} & \text { for } x>0\end{cases}
$$

(a) Find the left-hand derivative of f at $x=0$.
(b) Find the right-hand derivative of f at $x=0$.
(c) Is the function f differentiable at $x=0$? Explain why or why not.
(d) Suppose the function g is defined by

$$
g(x)= \begin{cases}x+2 & \text { for } x \leq 0 \\ a(x+b)^{2} & \text { for } x>0\end{cases}
$$

where a and b are constants. If g is differentiable at $x=0$, what are the values of a and b ?

1. If $f(x)=\left(x^{3}-2 x+5\right)\left(x^{-2}+x^{-1}\right)$, then $f^{\prime}(1)=$
(A) -10
(B) -6
(C) $-\frac{9}{2}$
(D) $\frac{7}{2}$
2. If $f(x)=\frac{\sqrt{x}-1}{\sqrt{x}+1}$ then $f^{\prime}(x)=$
(A) $\frac{\sqrt{x}}{(\sqrt{x}+1)^{2}}$
(B) $\frac{x}{(\sqrt{x}+1)^{2}}$
(C) $\frac{1}{\sqrt{x}(\sqrt{x}+1)^{2}}$
(D) $\frac{\sqrt{x}-1}{\sqrt{x}(\sqrt{x}+1)^{2}}$
3. If $g(2)=3$ and $g^{\prime}(2)=-1$, what is the value of $\frac{d}{d x}\left(\frac{g(x)}{x^{2}}\right)$ at $x=2$?
(A) -3
(B) -1
(C) 0
(D) 2
4. If $f(x)=\frac{x}{x-\frac{a}{x}}$ and $f^{\prime}(1)=\frac{1}{2}$, what is the value of a ?
(A) $-\frac{5}{2}$
(B) -1
(C) $\frac{1}{2}$
(D) 2
5. If $y=4 \sqrt{x}-16 \sqrt[4]{x}$, then $y^{\prime \prime}=$
(A) $\sqrt[4]{x}-3$
(B) $-3 \sqrt{x}+3$
(C) $\frac{-\sqrt[4]{x}+3}{x \sqrt[4]{x^{3}}}$
(D) $\frac{\sqrt{x}-3}{x \sqrt[4]{x}}$
6. If $y=x^{2} \cdot f(x)$, then $y^{\prime \prime}=$
(A) $x^{2} f^{\prime \prime}(x)+x f^{\prime}(x)+2 f(x)$
(B) $x^{2} f^{\prime \prime}(x)+x f^{\prime}(x)+f(x)$
(C) $x^{2} f^{\prime \prime}(x)+2 x f^{\prime}(x)+f(x)$
(D) $x^{2} f^{\prime \prime}(x)+4 x f^{\prime}(x)+2 f(x)$
7. Let $f(x)=\frac{1}{2} x^{6}-10 x^{3}+12 x$. What is the value of $f(x)$, when $f^{\prime \prime \prime}(x)=0$?
(A) $-\frac{23}{4}$
(B) $-\frac{3}{2}$
(C) $\frac{1}{2}$
(D) $\frac{5}{2}$

Free Response Questions

8. Let $h(x)=x \cdot f(x) \cdot g(x)$. Find $h^{\prime}(1)$, if $f(1)=-2, g(1)=3, f^{\prime}(1)=1$, and $g^{\prime}(1)=\frac{1}{2}$.
9. Let $g(x)=\frac{x}{\sqrt{x}-1}$. Find $g^{\prime \prime}(4)$.
10. If $f(x)=\sqrt{x+\sqrt{x}}$, then $f^{\prime}(x)=$
(A) $\frac{1}{2 \sqrt{x+\sqrt{x}}}$
(B) $\frac{\sqrt{x}+1}{2 \sqrt{x+\sqrt{x}}}$
(C) $\frac{2 \sqrt{x}}{4 \sqrt{x+\sqrt{x}}}$
(D) $\frac{2 \sqrt{x}+1}{4 \sqrt{x^{2}+x \sqrt{x}}}$
11. If $f(x)=\left(x^{2}-3 x\right)^{3 / 2}$, then $f^{\prime}(4)=$
(A) $\frac{15}{2}$
(B) 9
(C) $\frac{21}{2}$
(D) 15
12. If f, g, and h are functions that is everywhere differentiable, then the derivative of $\frac{f}{g \cdot h}$ is
(A) $\frac{g h f^{\prime}-f g^{\prime} h^{\prime}}{g h}$
(B) $\frac{g h f^{\prime}-f g h^{\prime}-f h g^{\prime}}{g h}$
(C) $\frac{g h f^{\prime}-f g h^{\prime}-f g^{\prime} h}{g^{2} h^{2}}$
(D) $\frac{g h f^{\prime}-f g h^{\prime}+f h g^{\prime}}{g^{2} h^{2}}$
13. If $f(x)=(3-\sqrt{x})^{-1}$, then $f^{\prime \prime}(4)=$
(A) $\frac{3}{32}$
(B) $\frac{3}{16}$
(C) $\frac{3}{4}$
(D) $\frac{9}{4}$

Free Response Questions

Questions 5-9 refer to the following table.

x	$f(x)$	$g(x)$	$f^{\prime}(x)$	$g^{\prime}(x)$
1	3	2	1	-1
2	-2	1	-1	3
3	1	4	2	3
4	5	2	1	-2

The table above gives values of f, f^{\prime}, g, and g^{\prime} at selected values of x.
5. Find $h^{\prime}(1)$, if $h(x)=f(g(x))$.
6. Find $h^{\prime}(2)$, if $h(x)=x f\left(x^{2}\right)$.
7. Find $h^{\prime}(3)$, if $h(x)=\frac{f(x)}{\sqrt{g(x)}}$.
8. Find $h^{\prime}(2)$, if $h(x)=[f(2 x)]^{2}$.
9. Find $h^{\prime}(1)$, if $h(x)=\left(x^{9}+f(x)\right)^{-2}$.
10. Let f and g be differentiable functions such that $f(g(x))=2 x$ and $f^{\prime}(x)=1+[f(x)]^{2}$.
(a) Show that $g^{\prime}(x)=\frac{2}{f^{\prime}(g(x))}$.
(b) Show that $g^{\prime}(x)=\frac{2}{1+4 x^{2}}$.

1. $\lim _{h \rightarrow 0} \frac{\cos \left(\frac{\pi}{3}+h\right)-\frac{1}{2}}{h}=$
(A) $-\frac{1}{2}$
(B) $-\frac{\sqrt{3}}{2}$
(C) $\frac{1}{2}$
(D) $\frac{\sqrt{3}}{2}$
2. $\lim _{h \rightarrow 0} \frac{\sin 2(x+h)-\sin 2 x}{h}=$
(A) $2 \sin 2 x$
(B) $-2 \sin 2 x$
(C) $2 \cos 2 x$
(D) $-2 \cos 2 x$
3. If $f(x)=\sin (\cos 2 x)$, then $f^{\prime}\left(\frac{\pi}{4}\right)=$
(A) 0
(B) -1
(C) 1
(D) -2
4. If $y=a \sin x+b \cos x$, then $y+y^{\prime \prime}=$
(A) 0
(B) $2 a \sin x$
(C) $2 b \cos x$
(D) $-2 a \sin x$
5. $\frac{d}{d x} \sec ^{2}(\sqrt{x})=$
(A) $\frac{2 \sec (\sqrt{x}) \tan (\sqrt{x})}{\sqrt{x}}$
(B) $\frac{2 \sec ^{2}(\sqrt{x}) \tan (\sqrt{x})}{\sqrt{x}}$
(C) $\frac{\sec ^{2}(\sqrt{x}) \tan (\sqrt{x})}{\sqrt{x}}$
(D) $\frac{\sec (\sqrt{x}) \tan (\sqrt{x})}{\sqrt{x}}$
6. $\frac{d}{d x}\left[x^{2} \cos 2 x\right]=$
(A) $-2 x \sin 2 x$
(B) $2 x(-x \sin 2 x+\cos 2 x)$
(C) $2 x(x \sin 2 x-\cos 2 x)$
(D) $2 x(x \sin 2 x-\cos 2 x)$
7. If $f(\theta)=\cos \pi-\frac{1}{2 \cos \theta}+\frac{1}{3 \tan \theta}$, then $f^{\prime}\left(\frac{\pi}{6}\right)=$
(A) $\frac{1}{2}$
(B) 1
(C) $\frac{4}{\sqrt{3}}$
(D) $2 \sqrt{3}$

Free Response Questions

x	$f(x)$	$g(x)$	$f^{\prime}(x)$	$g^{\prime}(x)$
1	$-1 / 2$	$3 / 2$	4	$\sqrt{2}$
$\pi / 4$	-2	1	2	3

8. The table above gives values of f, f^{\prime}, g, and g^{\prime} at selected values of x.

Find $h^{\prime}\left(\frac{\pi}{4}\right)$, if $h(x)=f(x) \cdot g(\tan x)$.
9. Find the value of the constants a and b for which the function
$f(x)=\left\{\begin{array}{ll}\sin x, & x<\pi \\ a x+b, & x \geq \pi\end{array}\right.$ is differentiable at $x=\pi$.

1. $\lim _{h \rightarrow 0} \frac{\frac{1}{2}[\ln (e+h)-1]}{h}$ is
(A) $f^{\prime}(1)$, where $f(x)=\ln \sqrt{x}$
(B) $f^{\prime}(1)$, where $f(x)=\ln \sqrt{x+e}$
(C) $f^{\prime}(e)$, where $f(x)=\ln \sqrt{x}$
(D) $f^{\prime}(e)$, where $f(x)=\ln \left(\frac{x}{2}\right)$
2. If $f(x)=e^{\tan x}$, then $f^{\prime}\left(\frac{\pi}{4}\right)=$
(A) $\frac{e}{2}$
(B) e
(C) $2 e$
(D) $\frac{e^{2}}{2}$
3. If $y=\ln (\cos x)$, then $y^{\prime}=$
(A) $-\tan x$
(B) $\tan x$
(C) $-\cot x$
(D) $\csc x$
4. If $y=x^{x}$, then $y^{\prime}=$
(A) $x^{x} \ln x$
(B) $x^{x}(1+\ln x)$
(C) $x^{x}(x+\ln x)$
(D) $\frac{x^{x} \ln x}{x}$
5. If $y=e^{\sqrt{x^{2}+1}}$, then $y^{\prime}=$
(A) $\sqrt{x^{2}+1} e^{\sqrt{x^{2}+1}}$
(B) $2 x \sqrt{x^{2}+1} e^{\sqrt{x^{2}+1}}$
(C) $\frac{e^{\sqrt{x^{2}+1}}}{\sqrt{x^{2}+1}}$
(D) $\frac{x e^{\sqrt{x^{2}+1}}}{\sqrt{x^{2}+1}}$
6. If $y=(\sin x)^{1 / x}$, then $y^{\prime}=$
(A) $(\sin x)^{\frac{1}{x}}\left[\frac{\ln (\sin x)}{x}\right]$
(B) $(\sin x)^{\frac{1}{x}}\left[\frac{x-\ln (\sin x)}{x^{2}}\right]$
(C) $(\sin x)^{\frac{1}{x}}\left[\frac{x \sin x-\ln (\sin x)}{x^{2}}\right]$
(D) $(\sin x)^{\frac{1}{x}}\left[\frac{x \cot x-\ln (\sin x)}{x^{2}}\right]$
7. If $f(x)=\ln [\sec (\ln x)]$, then $f^{\prime}(e)=$
(A) $\frac{\cos 1}{e}$
(B) $\frac{\sin 1}{e}$
(C) $\frac{\tan 1}{e}$
(D) $\frac{\cot 1}{e}$
8. If $y=x^{\ln \sqrt{x}}$, then $y^{\prime}=$
(A) $\frac{x^{\ln \sqrt{x}} \ln x}{2 x}$
(B) $\frac{x^{\ln \sqrt{x}} \ln x}{x}$
(C) $\frac{2 x^{\ln \sqrt{x}} \ln x}{x}$
(D) $\frac{x^{\ln \sqrt{x}}(1+\ln x)}{x}$

Free Response Questions

9. Let $f(x)=x e^{x}$ and $f^{(n)}(x)$ be the nth derivative of f with respect to x. If $f^{(10)}(x)=(x+n) e^{x}$, what is the value of n ?
10. Let f and h be twice differentiable functions such that $h(x)=e^{f(x)}$. If $h^{\prime \prime}(x)=e^{f(x)}\left[1+x^{2}\right]$, then $f^{\prime}(x)=$
11. The equation of the line tangent to the graph of $y=x \sqrt{3+x^{2}}$ at the point $(1,2)$ is
(A) $y=\frac{3}{2} x-\frac{1}{2}$
(B) $y=2 x+\frac{1}{2}$
(C) $y=\frac{5}{2} x-\frac{1}{2}$
(D) $y=\frac{5}{2} x+\frac{1}{2}$
12. Which of the following is an equation of the line tangent to the graph of $f(x)=x^{2}-x$ at the point where $f^{\prime}(x)=3$?
(A) $y=3 x-2$
(B) $y=3 x+2$
(C) $y=3 x-4$
(D) $y=3 x+4$
13. A curve has slope $2 x+x^{-2}$ at each point (x, y) on the curve. Which of the following is an equation for this curve if it passes through the point $(1,3)$?
(A) $y=2 x^{2}+\frac{1}{x}$
(B) $y=x^{2}-\frac{1}{x}+3$
(C) $y=x^{2}+\frac{1}{x}+1$
(D) $y=x^{2}-\frac{2}{x^{2}}+4$
14. An equation of the line normal to the graph of $y=\tan x$, at the point $\left(\frac{\pi}{6}, \frac{1}{\sqrt{3}}\right)$ is
(A) $y-\frac{1}{\sqrt{3}}=-\frac{1}{4}\left(x-\frac{\pi}{6}\right)$
(B) $y-\frac{1}{\sqrt{3}}=\frac{1}{4}\left(x-\frac{\pi}{6}\right)$
(C) $y-\frac{1}{\sqrt{3}}=-\frac{3}{4}\left(x-\frac{\pi}{6}\right)$
(D) $y-\frac{1}{\sqrt{3}}=\frac{3}{4}\left(x-\frac{\pi}{6}\right)$
15. If $2 x+3 y=4$ is an equation of the line normal to the graph of f at the point $(-1,2)$, then $f^{\prime}(-1)=$
(A) $-\frac{2}{3}$
(B) $\frac{1}{\sqrt{2}}$
(C) $\sqrt{2}$
(D) $\frac{3}{2}$
16. If $2 x-y=k$ is an equation of the line normal to the graph of $f(x)=x^{4}-x$, then $k=$
(A) $\frac{23}{16}$
(B) $\frac{13}{18}$
(C) $\frac{15}{16}$
(D) $\frac{9}{8}$

Free Response Questions

7. Line ℓ is tangent to the graph of $y=x-\frac{x^{2}}{120}$ at the point P and intersects x-axis at $(-15,0)$ as shown in the figure above.
(a) Find the x-coordinates of point P.
(b) Write an equation for line ℓ.
(c) If the line of symmetry for the curve $y=x-\frac{x^{2}}{120}$ intersects line ℓ at point R, what is the length of $\overline{Q R}$?

1. If $3 x y+x^{2}-2 y^{2}=2$, then the value of $\frac{d y}{d x}$ at the point (1,1) is
(A) 5
(B) $\frac{7}{2}$
(C) $-\frac{1}{2}$
(D) $-\frac{7}{2}$
2. If $3 x^{4}-x^{2}-y^{2}=0$, then the value of $\frac{d y}{d x}$ at the point $(1, \sqrt{2})$ is
(A) $\frac{\sqrt{2}}{2}$
(B) $\frac{3 \sqrt{2}}{2}$
(C) $\frac{5 \sqrt{2}}{2}$
(D) $\frac{7 \sqrt{2}}{2}$
3. If $x^{2} y+2 x y^{2}=5 x$, then $\frac{d y}{d x}=$
(A) $\frac{5-4 x y-4 y}{x^{2}+4 x y}$
(B) $\frac{5-2 x y-2 y^{2}}{x^{2}+4 x y}$
(C) $\frac{5-2 x y-y^{2}}{x^{2}+2 x y}$
(D) $\frac{5-x y-2 y}{x^{2}-2 x y}$
4. If $x y+\tan (x y)=\pi$, then $\frac{d y}{d x}=$
(A) $-y \sec ^{2}(x y)$
(B) $-y \cos ^{2}(x y)$
(C) $-x \sec ^{2}(x y)$
(D) $-\frac{y}{x}$
5. An equation of the line tangent to the graph of $3 y^{2}-x^{3}-x y^{2}=7$ at the point $(1,2)$ is
(A) $y=\frac{3}{4} x-\frac{3}{8}$
(B) $y=\frac{3}{4} x+\frac{1}{2}$
(C) $y=-\frac{7}{8} x+\frac{3}{2}$
(D) $y=\frac{7}{8} x+\frac{9}{8}$
6. An equation of the line normal to the graph of $2 x^{2}+3 y^{2}=5$ at the point $(1,1)$ is
(A) $y=\frac{3}{2} x+1$
(B) $y=\frac{3}{2} x-\frac{1}{2}$
(C) $y=-\frac{2}{3} x+\frac{5}{3}$
(D) $y=-\frac{2}{3} x+\frac{3}{2}$
7. If $x+\sin y=y+3$, then $\frac{d^{2} y}{d x^{2}}=$
(A) $\frac{-\sin y}{(1-\cos y)^{2}}$
(B) $\frac{-\sin y}{(1+\cos y)^{2}}$
(C) $\frac{-\sin y}{(1-\cos y)^{3}}$
(D) $\frac{-\sin y}{(1+\cos y)^{3}}$

Free Response Questions

8. Consider the curve given by $x^{3}-x y+y^{2}=3$.
(a) Find $\frac{d y}{d x}$.
(b) Find all points on the curve whose x-coordinate is 1 , and write an equation for the tangent line at each of these points.
(c) Find the x-coordinate of each point on the curve where the tangent line is horizontal.
9. Consider the curve $x^{2}+y^{2}-x y=7$.
(a) Find $\frac{d y}{d x}$.
(b) Find all points on the curve whose x-coordinate is 2 , and write an equation for the tangent line at each of these points.
(c) Find the x-coordinate of each point on the curve where the tangent line is vertical.
10. Let f and g be functions that are differentiable everywhere. If g is the inverse function of f and if $g(3)=4$ and $f^{\prime}(4)=\frac{3}{2}$, then $g^{\prime}(3)=$
(A) $\frac{1}{4}$
(B) $\frac{1}{3}$
(C) $\frac{2}{3}$
(D) $\frac{4}{3}$
11. If $f(-3)=2$ and $f^{\prime}(-3)=\frac{3}{4}$, then $\left(f^{-1}\right)^{\prime}(2)=$
(A) $\frac{1}{2}$
(B) $\frac{4}{3}$
(C) $\frac{3}{2}$
(D) $-\frac{3}{4}$
12. If $f(x)=x^{3}-x+2$, then $\left(f^{-1}\right)^{\prime}(2)=$
(A) $\frac{1}{2}$
(B) $\frac{2}{3}$
(C) 4
(D) 6
13. If $f(x)=\sin x$, then $\left(f^{-1}\right)^{\prime}\left(\frac{\sqrt{3}}{2}\right)=$
(A) $\frac{1}{2}$
(B) $\frac{2 \sqrt{3}}{3}$
(C) $\sqrt{3}$
(D) 2
14. If $f(x)=1+\ln x$, then $\left(f^{-1}\right)^{\prime}(2)=$
(A) $-\frac{1}{e}$
(B) $\frac{1}{e}$
(C) $-e$
(D) e

Free Response Questions

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
-1	3	-2	2	6
0	-2	-1	0	-3
1	0	1	-1	2
2	-1	4	3	-1

6. The functions f and g are differentiable for all real numbers. The table above gives the values of the functions and their first derivatives at selected values of x.
(a) If f^{-1} is the inverse function of f, write an equation for the line tangent to the graph of $y=f^{-1}(x)$ at $x=-1$.
(b) Let h be the function given by $h(x)=f(g(x))$. Find $h(1)$ and $h^{\prime}(1)$.
(c) Find $\left(h^{-1}\right)^{\prime}(3)$, if h^{-1} is the inverse function of h.
7. $\frac{d}{d x}\left(\arcsin x^{2}\right)=$
(A) $-\frac{2 x}{\sqrt{1-x^{2}}}$
(B) $\frac{2 x}{\sqrt{x^{2}-1}}$
(C) $\frac{2 x}{\sqrt{x^{4}-1}}$
(D) $\frac{2 x}{\sqrt{1-x^{4}}}$
8. If $f(x)=\arctan \left(e^{-x}\right)$, then $f^{\prime}(-1)=$
(A) $\frac{-e}{1+e}$
(B) $\frac{e}{1+e}$
(C) $\frac{-e}{1+e^{2}}$
(D) $\frac{-1}{1+e^{2}}$
9. If $f(x)=\arctan (\sin x)$, then $f^{\prime}\left(\frac{\pi}{3}\right)=$
(A) $\frac{2}{7}$
(B) $\frac{1}{2}$
(C) $\frac{\sqrt{2}}{3}$
(D) $\frac{\sqrt{3}}{3}$
10. If $y=\cos \left(\sin ^{-1} x\right)$, then $y^{\prime}=$
(A) $-\frac{1}{\sqrt{1-x^{2}}}$
(B) $-\frac{x}{\sqrt{1-x^{2}}}$
(C) $\frac{2 x}{\sqrt{1-x^{2}}}$
(D) $-\frac{2 x}{\sqrt{x^{2}-1}}$

Free Response Questions

5. Let f be the function given by $f(x)=x^{\tan ^{-1} x}$.
(a) Find $f^{\prime}(x)$.
(b) Write an equation for the line tangent to the graph of f at $x=1$.
6. Some values of differentiable function f are shown in the table below.

What is the approximation value of $f^{\prime}(3.5)$?

x	3.0	3.3	3.8	4.2	4.9
$f(x)$	21.8	26.1	32.5	38.2	48.7

(A) 8
(B) 10
(C) 13
(D) 16

Free Response Questions

Month	1	2	3	4	5	6
Temperature	-8	0	25	50	72	88

2. The normal daily maximum temperature F for a certain city is shown in the table above.
(a) Use data in the table to find the average rate of change in temperature from $t=1$ to $t=6$.
(b) Use data in the table to estimate the rate of change in maximum temperature at $t=4$.
(c) The rate at which the maximum temperature changes for $1 \leq t \leq 6$ is modeled by $F(t)=40-52 \sin \left(\frac{\pi t}{6}-5\right)$ degrees per minute. Find $F^{\prime}(4)$ using the given model.
