2006

- 5. Consider the differential equation $\frac{dy}{dx} = \frac{1+y}{x}$, where $x \neq 0$.
 - (a) On the axes provided, sketch a slope field for the given differential equation at the eight points indicated.

(Note: Use the axes provided in the pink exam booklet.)

(b) Find the particular solution y = f(x) to the differential equation with the initial condition f(-1) = 1 and state its domain.

Euler's Method for Solving Differentials

What happened when we can't separate the variables? We need to use Euler's method to get an approximation of a particular solution.

We are approximating the solution to the differential equation (y') = F(x, y). We know it passes through an initial point (x_0, y_0) and has a slope of $F(x_0, y_0)$.

Example 1: Use Euler's Method to approximate the particular solution of the differential equation y' = x - y passing through the point (0, 1). Use a step of h = 0.1 and approximate the value of y(0.5).

$$X_0 = 0$$
 $X_1 = 0.1$
 $X_2 = 0.2$
 $X_3 = 0.3$
 $X_4 = 0.4$
 $X_5 = 0.5$

$$\begin{vmatrix}
0 & = 1 \\
1 & = 1 + 0.1 & 0 - 1 \\
2 & = 0.9 + 0.1 & 0.1 - 0.9 \\
3 & = 0.82 + 0.1 & 0.2 - 0.82 \\
4 & = 0.758 + 0.1 & 0.3 - 0.758 \\
4 & = 0.7122 + 0.1 & 0.4 - 0.7122$$

$$\begin{vmatrix}
6 & = 0.7122 + 0.1 & 0.4 - 0.7122
\end{vmatrix} = 0.68098$$

Example 2: The curve passing through (2, 0) satisfies the differential equation $\frac{dy}{dx} = 4x + y$. Find an approximation to y(3) using Euler's method with two equal steps. $k = \frac{1}{2}$

4.2

-0.3

4.4

-0.1

Example 3: Assume that f and its derivative f' have the values given in the table, Use Euler's Method with two equal steps to approximate the value of f(4.4)

$$h = 0.2 = \frac{1}{5}$$

$$X_0 = 4$$

$$V_0 = 2$$

$$X_1 = 4.2$$

$$V_1 = 2 + \frac{1}{5} \left[-\frac{1}{2} \right] = \frac{19}{10}$$

$$X_2 = 4.4$$

$$V_2 = \frac{19}{10} + \frac{1}{5} \left[-\frac{3}{10} \right] = \frac{92}{50} = \frac{46}{25}$$

$$f(4.4) \approx \frac{46}{25} = 1.840$$

2016

- 4. Consider the differential equation $\frac{dy}{dx} = x^2 \frac{1}{2}y$.
 - (a) Find $\frac{d^2y}{dx^2}$ in terms of x and y.
 - (b) Let y = f(x) be the particular solution to the given differential equation whose graph passes through the point (-2, 8). Does the graph of f have a relative minimum, a relative maximum, or neither at the point (-2, 8)? Justify your answer.
 - (c) Let y = g(x) be the particular solution to the given differential equation with g(-1) = 2. Find $\lim_{x \to -1} \left(\frac{g(x) 2}{3(x+1)^2} \right)$. Show the work that leads to your answer.
 - (d) Let y = h(x) be the particular solution to the given differential equation with h(0) = 2. Use Euler's method, starting at x = 0 with two steps of equal size, to approximate h(1).

(a)
$$\frac{d^2y}{dx^2} = 2x - \frac{1}{2}\frac{dy}{dx} = 2x - \frac{1}{2}\left(x^2 - \frac{1}{2}y\right)$$

2: $\frac{d^2y}{dx^2}$ in terms of x and y

(b)
$$\frac{dy}{dx}\Big|_{(x, y)=(-2, 8)} = (-2)^2 - \frac{1}{2} \cdot 8 = 0$$

$$\frac{d^2y}{dx^2}\Big|_{(x, y)=(-2, 8)} = 2(-2) - \frac{1}{2}\Big((-2)^2 - \frac{1}{2} \cdot 8\Big) = -4 < 0$$

2 : conclusion with justification

Thus, the graph of f has a relative maximum at the point (-2, 8).

(c)
$$\lim_{x \to -1} (g(x) - 2) = 0$$
 and $\lim_{x \to -1} 3(x + 1)^2 = 0$

 $3:\begin{cases} 2: L \text{ Hospital s Ku} \\ 1: \text{ answer} \end{cases}$

Using L'Hospital's Rule,

$$\lim_{x \to -1} \left(\frac{g(x) - 2}{3(x+1)^2} \right) = \lim_{x \to -1} \left(\frac{g'(x)}{6(x+1)} \right)$$

$$\lim_{x \to -1} g'(x) = 0$$
 and $\lim_{x \to -1} 6(x+1) = 0$

Using L'Hospital's Rule,

$$\lim_{x \to -1} \left(\frac{g'(x)}{6(x+1)} \right) = \lim_{x \to -1} \left(\frac{g''(x)}{6} \right) = \frac{-2}{6} = -\frac{1}{3}$$

(d)
$$h\left(\frac{1}{2}\right) \approx h(0) + h'(0) \cdot \frac{1}{2} = 2 + (-1) \cdot \frac{1}{2} = \frac{3}{2}$$

 $h(1) \approx h\left(\frac{1}{2}\right) + h'\left(\frac{1}{2}\right) \cdot \frac{1}{2} \approx \frac{3}{2} + \left(-\frac{1}{2}\right) \cdot \frac{1}{2} = \frac{5}{4}$

 $2: \begin{cases} 1 : \text{Euler's method} \\ 1 : \text{approximation} \end{cases}$

Logistics Differential Equations

We have previously studied <u>exponential growth</u> models that derive from the fact that the <u>rate of</u> <u>change of a variable y is proportional to the value of y.</u>

$$\frac{dy}{dt} = ky$$
 Solution: $y = Ce^{kt}$

- Exponential growth describes something **increasing without bound.**

When talking about populations, there is often some upper boundary passed which growth cannot occur. This upper limit, L, is called the <u>carrying capacity</u>, which is the maximum population y(t) that can be sustained/supported. We can model this with a <u>logistic differential equation</u>.

$$\frac{dy}{dt} = ky\left(1 - \frac{y}{L}\right)$$

$$\begin{array}{c} k - \text{growth factor} \\ y - \text{population} \\ 1 - \text{carrying capacity} \end{array}$$

o
$$\lim_{t\to\infty} y(t) = L$$

o $\max_{t\to\infty} x$ RATE of : $y = \frac{1}{2}L$

$$\frac{dy}{dt} = ky(1-\frac{y}{2})$$

$$\int \frac{L}{y(1-y)} dy = \int k dt$$

$$ln|y| - ln|L-y| = Kt + C$$

$$|x-y| - h|y| = -kt + c$$

$$|x-y| - h|y| = -kt + c$$

$$|x-y| = -kt + c$$

$$|x-y| = ce^{-kt}$$

$$|x-y| = ce^{-kt}$$

$$|x-y| = ce^{-kt}$$

$$\frac{L}{y(L-y)} = \frac{A}{y} + \frac{B}{L-y}$$

$$L = (-A+B)y + AL$$

$$-A+B=0 \qquad AL=L$$

$$\boxed{B=1} \qquad \boxed{A=1}$$

$$\boxed{y} + \frac{1}{L-y} dy$$

$$\frac{L}{y} = \frac{1 + Ce^{-kt}}{1}$$

$$y = \frac{L}{1 + Ce^{-kt}}$$

- All solutions of the logistic differential equation are of the general form:

$$y = \frac{L}{1 + be^{-kt}}$$

Example 1: Suppose the population of bears in a national park grows according to the logistic differential

equation $\frac{dp}{dt} = 5p - 0.002p^2$, where p is the number of bears at time t in years.

- (a) Find an equation, p(t), to represent the population of the bears.
- $\frac{dp}{dt} = \frac{6p}{1 \frac{p}{6500}}$

- (b) Find $\lim_{t\to\infty} p(t)$.
- (c) Consider the initial conditions: p(0) = 100, p(0) = 1500, and p(0) = 3000. Is the population increasing or decreasing of for each of the initial conditions?
- (d) How many bears are in the park when the population of bears is growing the fastest? Justify your answer.
- (e) Sketch a graph of p(t) for each of the initial conditions in c.

(a)
$$P(t) = \frac{2500}{1 + 0e^{-5t}}$$

(b)
$$\lim_{t \to \infty} \frac{2500}{1 + \frac{b}{r^{5t}}} = 2500$$

$$\frac{dp}{dt}\Big|_{p=100} = \frac{dp}{480} = \frac{dp}{dt}\Big|_{p=1500} = \frac{dp}{3000} = \frac{dp}{yr} = \frac{dp}{dt}\Big|_{p=3000} = \frac{-3000}{yr}$$
INC

INC

DEC

(d)
$$\frac{d^2p}{dt^2} = (5 - 0.004p) \cdot \frac{dp}{dt} = (5 - 0.004p) (5p - 0.002p^2)$$

2500

1250

Example 2: A state game commission releases 40 elk into a game refuge. After 5 years, the elk population is 104. The commission believes that the environment can support no more than 4000 elk.

- (a) Write a model for the elk population in terms of t.
- (b) Estimate the elk population after 15 years.
- (c) Find $\lim_{t\to\infty} \xi(t)$.

(a)
$$E(t) = \frac{1}{1 + be^{-kt}}$$
 $40 = \frac{4000}{1 + b}$
 $1+b = 100$
 $b = 99$
 $104 = \frac{4000}{1 + 900} = 5k$
 $1 + 99e^{-5k} = \frac{500}{13}$
 $99e^{-5k} = \frac{487}{1287}$
 $-5k = \ln(\frac{487}{1287})$
 $k = -\frac{1}{5} \ln(\frac{487}{1287})$
 $k = 0.194$

(0,40) (5,104)

Example 3:

The population P(t) of a species satisfies the logistic differential equation

$$\frac{dP}{dt} = P\left(2 - \frac{P}{5000}\right)$$
, where the initial population is $P(0) = 3000$ and t is the time in years.

What is $\lim_{t\to\infty} P(t)$?

$$\frac{d\rho}{dt} = 2\rho \left(1 - \frac{P}{10000}\right)$$

$$\lim_{t\to\infty} P(t) = |0000$$

2004 Question 5

A population is modeled by a function P that satisfies the logistic differential equation

$$\frac{dP}{dt} = \frac{P}{5} \left(1 - \frac{P}{12} \right).$$

- (a) If P(0) = 3, what is $\lim_{t \to \infty} P(t)$? If P(0) = 20, what is $\lim_{t \to \infty} P(t)$?
- (b) If P(0) = 3, for what value of P is the population growing the fastest?
- (c) A different population is modeled by a function Y that satisfies the separable differential equation

$$\frac{dY}{dt} = \frac{Y}{5} \left(1 - \frac{t}{12} \right).$$

Find
$$Y(t)$$
 if $Y(0) = 3$.

(d) For the function Y found in part (c), what is $\lim_{t\to\infty} Y(t)$?

If
$$P(0) = 3$$
, $\lim_{t \to \infty} P(t) = 12$.
If $P(0) = 20$, $\lim_{t \to \infty} P(t) = 12$.

(b) The population is growing the fastest when
$$P$$
 is half the carrying capacity. Therefore, P is growing the fastest when $P = 6$.

(c)
$$\frac{1}{Y}dY = \frac{1}{5}\left(1 - \frac{t}{12}\right)dt = \left(\frac{1}{5} - \frac{t}{60}\right)dt$$

$$\ln|Y| = \frac{t}{5} - \frac{t^2}{120} + C$$

$$Y(t) = Ke^{\frac{t}{5} - \frac{t^2}{120}}$$

$$K = 3$$

$$Y(t) = 3e^{\frac{t}{5} - \frac{t^2}{120}}$$

(d)
$$\lim_{t \to \infty} Y(t) = 0$$

$$2: \begin{cases} 1 : answer \\ 1 : answer \end{cases}$$

1: answer

Note: max 2/5 [1-1-0-0-0] if no constant of integration

Note: 0/5 if no separation of variables

1: answer 0/1 if Y is not exponential