Power Series: Interval of Convergence

Previously, we found the radius of convergence for power series. The work that we did, gave us an idea of the x-values for which a power series converged. The theorem previously used said nothing about convergence at the endpoints of the interval.

- Each endpoint must be tested separately for convergence or divergence.
- The interval of convergence can be open on both ends, closed on both ends, or open on one end and closed on the other.

Example 1: Find the interval of convergence of

$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$\sum_{n=1}^{\infty} \frac{x^n}{n}$$

$$|X| = -1$$

$$|X| = -1$$

$$|X| = -1$$

$$|X| = -1$$

$$|X| = 1$$

$$|X| =$$

Interval
$$: -1 \le X \le 1$$

Convergence $[-1,1)$

Example 2: Find the interval of convergence of
$$\sum_{n=0}^{\infty} \frac{(-1)^n (x+1)^n}{2^n} = \sum_{N=0}^{\infty} \left(\frac{-(x+1)^N}{2^N} \right) = \sum_{N=0}^{\infty} \left(\frac{-(x+1)^N}{2^N} \right)$$

$$\frac{\left(1 - \frac{1}{2}\right)^{n}}{2^{n}} = \frac{\left(-\frac{1}{2}\right)^{n}}{2^{n}} = \frac{1}{2^{n}}$$
Diverges by nt tem test

$$\frac{(-1)^{n}(2)^{n}}{2^{n}} = \sum_{k=1}^{\infty} (-1)^{k}$$
Diverges by n^{+k} term test

Interval of: -3 < x < 1 Convergence (-3,1)

$$\left| r \right| = \left| \frac{x+1}{2} \right| < 1$$

$$\left| x+1 \right| < 2$$

Example 3:
$$\sum_{n=1}^{\infty} \frac{(2x-1)^n}{5^n \sqrt{n}}$$

$$\begin{cases} \frac{1}{2x-1} & \frac{5^{n}\sqrt{n}}{5^{n+1}\sqrt{n+1}} & \frac{5^{n}\sqrt{n}}{(2x-1)^{n}} \end{cases}$$

$$\left| \frac{2x-1}{5} \right| < 1$$
 $\left| \frac{2x-1}{5} \right| < 5$
 $\left| \frac{2x-1}{5} \right| < \frac{5}{2}$
 $\left| \frac{2x-1}{5} \right| < \frac{5}{2}$

$$\frac{\left(\frac{x}{5}\right)^{n}}{5^{n}\sqrt{n}} = \frac{\left(-1\right)^{n}}{\sqrt{n}}$$
Comerges by Alt. Series

$$\sqrt{\frac{5^{n}}{5^{n}\sqrt{n}}} = \sum_{i} \frac{1}{\sqrt{n}}$$
Divergent P-series

INTERPAR of: $-2 \le X \le 3$ Convergence [-2,3)

We can examine the characteristics of a power series by looking at differentiation and integration of a power series.

Properties of Functions Defined by Power Series

If the function, given by

$$f(x) = \sum_{n=0}^{\infty} a_n (x - c)^n = \alpha_0 + \alpha_1 (x - c)^1 + \alpha_2 (x - c)^2 + \dots$$

1.
$$f'(x) = \alpha_1 + 2 \cdot \alpha_2 (x - c) + 3 \cdot \alpha_3 (x - c)^2 + \dots$$

$$=\sum_{n=1}^{\infty} n \cdot a_n (x-c)^{n-1}$$

2.
$$\int f(x)dx = a_0(x-c) + a_1(x-c)^2 + a_2(x-c)^3 + ...$$

$$= \sum_{n>0}^{\infty} a_n(x-c)^{n+1}$$

Considering the function and its derivative, how are the radius of convergence and interval of convergence related?

Example 4: Consider the function given by
$$f(x) = \sum_{n=1}^{\infty} \frac{x^n}{n} = x + \frac{x^2}{2} + \frac{x^3}{3} + \cdots$$

Find the radius and interval of convergence for each of the following.

a.
$$f(x)$$

b. $\int f(x)dx$

c. $f'(x)$

$$f(x) = \frac{x^2}{2} + \frac{x^3}{2 \cdot 3} + \frac{x^4}{3 \cdot 4} + \dots = 1 + x + x^2 + x^3 + \dots$$

$$= \sum_{n=1}^{\infty} \frac{x^{n+1}}{n(n+1)} = \sum_{n=0}^{\infty} x^n$$

$$\begin{cases} x^{n+2} \\ (n+1)(n+2) \\ x^{n+1} \end{cases} = \frac{x^{n+1}}{x^{n+1}} = \frac{x^{n+$$

* Differentiating / Integrating a power series results
in a series with on equal Radius of Comengence, but
may change the interval of convergence.

2016 BC Question 6

The function f has a Taylor series about x = 1 that converges to f(x) for all x in the interval of convergence.

It is known that f(1) = 1, $f'(1) = -\frac{1}{2}$, and the *n*th derivative of f at x = 1 is given by

$$f^{(n)}(1) = (-1)^n \frac{(n-1)!}{2^n}$$
 for $n \ge 2$.

- (a) Write the first four nonzero terms and the general term of the Taylor series for f about x = 1.
- (b) The Taylor series for f about x = 1 has a radius of convergence of 2. Find the interval of convergence. Show the work that leads to your answer.
- (c) The Taylor series for f about x = 1 can be used to represent f(1.2) as an alternating series. Use the first three nonzero terms of the alternating series to approximate f(1.2).
- (d) Show that the approximation found in part (c) is within 0.001 of the exact value of f(1.2).

(a)
$$f(1) = 1$$
, $f'(1) = -\frac{1}{2}$, $f''(1) = \frac{1}{2^2}$, $f'''(1) = -\frac{2}{2^3}$

$$f(x) = 1 - \frac{1}{2}(x - 1) + \frac{1}{2^2 \cdot 2}(x - 1)^2 - \frac{1}{2^3 \cdot 3}(x - 1)^3 + \cdots$$

$$+ \frac{(-1)^n}{2^n \cdot n}(x - 1)^n + \cdots$$

(b) R = 2. The series converges on the interval (-1, 3).

When x = -1, the series is $1 + 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$. Since the harmonic series diverges, this series diverges.

When x = 3, the series is $1 - 1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} + \cdots$. Since the alternating harmonic series converges, this series converges.

Therefore, the interval of convergence is $-1 < x \le 3$.

(c)
$$f(1.2) \approx 1 - \frac{1}{2}(0.2) + \frac{1}{8}(0.2)^2 = 1 - 0.1 + 0.005 = 0.905$$

(d) The series for f(1.2) alternates with terms that decrease in magnitude to 0.

$$|f(1.2) - T_2(1.2)| \le \left| \frac{-1}{2^3 \cdot 3} (0.2)^3 \right| = \frac{1}{3000} \le 0.001$$

4: 1: first two terms 1: third term 1: fourth term 1: general term

 $2: \left\{ \begin{array}{l} 1: identifies \ both \ endpoints \\ 1: analysis \ and \ interval \ of \ convergence \end{array} \right.$

1: approximation

 $2: \begin{cases} 1 : error form \\ 1 : analysis \end{cases}$

2005 BC Question 6

Let f be a function with derivatives of all orders and for which f(2) = 7. When n is odd, the nth derivative of f at x = 2 is 0. When n is even and $n \ge 2$, the nth derivative of f at x = 2 is given by $f^{(n)}(2) = \frac{(n-1)!}{3^n}$.

- (a) Write the sixth-degree Taylor polynomial for f about x = 2.
- (b) In the Taylor series for f about x = 2, what is the coefficient of $(x 2)^{2n}$ for $n \ge 1$?
- (c) Find the interval of convergence of the Taylor series for f about x = 2. Show the work that leads to your answer.

(a)
$$P_6(x) = 7 + \frac{1!}{3^2} \cdot \frac{1}{2!} (x-2)^2 + \frac{3!}{3^4} \cdot \frac{1}{4!} (x-2)^4 + \frac{5!}{3^6} \cdot \frac{1}{6!} (x-2)^6$$

(b)
$$\frac{(2n-1)!}{3^{2n}} \cdot \frac{1}{(2n)!} = \frac{1}{3^{2n}(2n)}$$

(c) The Taylor series for f about x = 2 is

$$f(x) = 7 + \sum_{n=1}^{\infty} \frac{1}{2n \cdot 3^{2n}} (x-2)^{2n}$$
.

$$L = \lim_{n \to \infty} \frac{\frac{1}{2(n+1)} \cdot \frac{1}{3^{2(n+1)}} (x-2)^{2(n+1)}}{\frac{1}{2n} \cdot \frac{1}{3^{2n}} (x-2)^{2n}}$$

$$= \lim_{n \to \infty} \left| \frac{2n}{2(n+1)} \cdot \frac{3^{2n}}{3^2 3^{2n}} (x-2)^2 \right| = \frac{(x-2)^2}{9}$$

L < 1 when |x - 2| < 3.

Thus, the series converges when -1 < x < 5.

When
$$x = 5$$
, the series is $7 + \sum_{n=1}^{\infty} \frac{3^{2n}}{2n \cdot 3^{2n}} = 7 + \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n}$,

which diverges, because $\sum_{n=1}^{\infty} \frac{1}{n}$, the harmonic series, diverges.

When
$$x = -1$$
, the series is $7 + \sum_{n=1}^{\infty} \frac{(-3)^{2n}}{2n \cdot 3^{2n}} = 7 + \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n}$,

3: $\begin{cases} 1 : \text{polynomial about } x = 2 \\ 2 : P_6(x) \\ \langle -1 \rangle \text{ each incorrect term } \\ \langle -1 \rangle \text{ max for all extra terms,} \\ + \cdots, \text{ misuse of equality} \end{cases}$

1 : coefficient

1 : sets up ratio

1: computes limit of ratio

identifies interior of
 interval of convergence

1: considers both endpoints

 analysis/conclusion for both endpoints